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Abstract

Detection of long simple cycles in real-world complex networks finds many
applications in layout algorithms, information flow modelling, as well as in
bioinformatics. In this paper, we propose two computational methods for
finding long cycles in real-world networks. The first method is an exact
approach based on our own integer linear programming formulation of the
problem and a data mining pipeline. This pipeline ensures that the problem
is solved as a sequence of integer linear programs. The second method is a
multi-start local search heuristic, which combines an initial construction of a
long cycle using depth-first search with four different perturbation operators.
Our experimental results are presented for social network samples, graphs
studied in the network science field, graphs from DIMACS series, and protein-
protein interaction networks. These results show that our formulation leads
to a significantly more efficient exact approach to solve the problem than a
previous formulation. For 14 out of 22 networks, we have found the optimal
solutions. The potential of heuristics in this problem is also demonstrated,
especially in the context of large-scale problem instances.
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1. Introduction

With the growing volume of information available as connected data,
the need for efficient algorithms to solve graph problems has been becoming
increasingly important [20].

The longest simple cycle problem is one of the classical NP-hard graph
problems, in which one simply aims to find the longest simple cycle in an
undirected graph. A simple cycle is defined as a connected subgraph of the
graph with all vertices having degree 2 and without repetitions in vertices or
edges. For simplicity, the term longest cycle will refer to the longest simple
cycle hereafter.

A cycle which spans all vertices of the graph is called a Hamiltonian cycle.
Hence, the longest cycle problem represents a generalisation of the decision
problem for Hamiltonian cycle [26] which is widely studied [6, 15, 44].

Searching for the longest cycle in a graph has been a subject of study in
statistical mechanics, with approaches based on message passing and Monte
Carlo procedures being used [33]. However, studying the longest cycle prob-
lem in the context of both exact and experimental algorithms, as well as
applications to real-world complex networks, has still been somewhat lim-
ited.

On the other hand, identifying long cycles finds its applications in au-
tomatic drawing of planar graphs [40] or in layout algorithms for metabolic
pathways in bioinformatics [5]. It is also closely related to community struc-
ture [31], its hierarchy [11] and propagation processes [50] in real-world net-
works. To the best of our knowledge, the longest cycle problem has not yet
been studied in the context of social networks nor several types of biological
networks. It seems that a spectrum of potential applications has not been
explored yet.

Previous scientific results on the longest cycle problem have been over-
whelmingly concerned with its theoretical properties. Complexity and ap-
proximability of the problem have been studied in sparse graphs [16, 37],
bounded degree graphs [12], triangle-free graphs [3], and small graph classes
[43].

Superpolylogarithmically long cycle detection [17], treewidth-based ap-
proximation [2, 9], and matrix-based approximation [34] have been explored
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Figure 1: The longest cycle identified for a high-throughput human protein-protein in-
teraction network Hsapi20160114HT from the UCLA database of interacting proteins
[38, 47, 48, 49]. Both of our approaches have found this cycle which consists of 64 vertices.
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as avenues for efficient finding of approximate solutions to the problem.
Exact methods for the problem include enumerative techniques [21, 23, 41]

and a branch-and-bound algorithm, which is based on an integer linear pro-
gramming (ILP) formulation of the problem [14]. The enumerative tech-
niques allow one to explore the distribution of the cycle numbers, as a func-
tion of the cycle length. This idea has successfully been explored for small
worlds, as well as the Kauffman networks [22, 28]. However, these algorithms
are naturally computationally demanding. Therefore, for large graphs, it is
interesting to search for the location of the far end of this distribution using
the identification of the longest cycle.

For the Hamiltonian cycle problem, approximation algorithms for max-
imal planar graphs have been explored [36]. Heuristics for the problem are
a subject of interest, too. These include an ant-inspired heuristic [44] or an
interior point heuristic [15]. Hamiltonian cycles in scale-free networks have
also been previously explored [6]. The longest cycle problem is also often
linked with the longest path problem, for which efficient algorithms [42] and
approximations [25] have been studied. Some other studies have also been
concerned with directed longest cycles [8].

Figure 1 shows the longest cycle in a high-throughput human protein-
protein interaction network, taken as one of the test instances for this paper
from the UCLA database of interacting proteins [38, 47, 48, 49]. This cycle
consists of 64 vertices. This visualisation arranges the proteins of the longest
cycle as an outer ring of the drawing. This shows the long cyclic dependency
of the protein interactions. These are valuable in a reconstruction of the
metabolic pathways [13], in which long cycles are used in layout algorithms
for their visualisation [5].

In this present article we focus on computational methods for finding
long cycles in real-world complex networks. These include social networks,
protein-protein interactions, as well as networks from several other domains.
Our approaches include both an exact method based on our own ILP for-
mulation of the problem, as well as a heuristic combining depth-first search
with a local improvement procedure using clustering properties of real-world
networks.

Our main contribution is in proposing a new ILP formulation the longest
cycle problem, as well as designing of a pipeline for efficient exact approach
to find the longest cycle. Additionally, we propose a hybrid heuristic, which
combines construction of a long cycle using depth-first search with four local
search operators to improve this initial cycle. Our computational results are
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presented for a diverse set of real-world networks, indicating that both the
size and the structure of the graph seem to influence the difficulty of the
problem.

Our article is structured as follows. In Section 2 we review the existing
ILP formulation of the longest cycle problem with fixed initial vertex and
introduce our own ILP formulation of the same problem. We then prove the
correctness of our formulation and propose a pipeline for the exact approach
which can be used with both formulations. In Section 3 we describe our
heuristic based on depth-first search and four local search operators. In
Section 4 we present the computational results of the exact approach and
compare it to the approach based on the previous formulation. We also show
the result of the heuristic on a real-world network data set. In Section 5
we discuss the obtained results and their interpretation. We offer several
conclusions and identify the open problems in Section 6.

2. Exact Approach to the Longest Simple Cycle Problem

In this section, we first review the current ILP formulation of the longest
simple cycle problem with fixed initial vertex [14]. Next, we introduce our
own formulation of this problem. Last but not least, we design a pipeline for
efficient solving of the problem as a sequence of ILP problems.

2.1. Dixon and Goodman’s Formulation of the Longest Simple Cycle Problem

In the following, we review the formulation used to design the branch-
and-bound algorithm for the problem [14]. In this formulation, the longest
cycle containing a fixed vertex is considered. The formulation uses a simple
trick of introducing a dummy vertex, which has the same adjacencies as the
fixed vertex. Instead of searching for the longest cycle, one can then search
for the longest path between the fixed vertex and this dummy vertex.

Dixon and Goodman’s ILP formulation of the longest cycle problem with a
fixed initial vertex [14]. Define an undirected graph G = [V,E] without loops,
with vertices v1, v2, ..., vn, and assume that the starting vertex for our cycle
is known. The known starting vertex is referred to as v1. Consider a graph
obtained from G by adding vertex vn+1, which is a “copy” of vertex v1, i.e.
has the same adjacencies. Let xij ∈ {0, 1} represent the transitions from
the vertex vi to vj, i.e. xij = 1 whenever the edge {vi, vj} is in the cycle
and xij = 0 otherwise. Then, we solve the following problem to obtain the
longest cycle, which includes v1:
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max
n∑
i=1

n∑
j=1

cijxij, (1)

where cij = 1 if vertices vi and vj are adjacent and cij = 0 otherwise:

cij =

{
1 {vi, vj} ∈ E
0 {vi, vj} /∈ E

, (2)

subject to:

n+1∑
i=1

cikxik = Fk, k = 2, 3, ..., n, (3)

n+1∑
i=1

ckjxkj = Fk, k = 2, 3, ..., n, (4)

n∑
j=2

c1jx1j =
n∑
i=1

ci(n+1)xi(n+1) = 1, (5)

yi − yj + nxij ≤ n− 1, i, j = 1, 2, ..., n+ 1, (6)

yi ≤ n+ 1, i = 1, 2, ..., n+ 1, (7)

where:

Fi =

{
1 if vi is used in the longest cycle
0 otherwise

. (8)

In this formulation, yi are dummy integer variables introduced for each vertex
vi. Constraints (6) and (7) ensure that one cycle is detected, instead of a set
of disjoint cycles. The authors of this formulation report that it leads to a
highly constrained feasible region of the search space and to a low efficiency
already for graphs with tens of vertices. More particularly, their experimental
results were presented for graphs on at most 40 vertices. In our computational
results, we will demonstrate that it is possible to formulate the problem more
efficiently.
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2.2. Our Formulation of the Longest Simple Cycle Problem

In the following, we present our own ILP formulation of the longest cycle
problem. Unlike the previous formulation based on a few tricks, our formu-
lation is based on an adaptation of a flow-based formulation of the travelling
salesperson problem [18].

Our ILP formulation of the longest cycle problem with a fixed initial ver-
tex. Define an undirected graph G = [V,E] without loops, with vertices
v1, v2, ..., vn, and assume that the starting vertex for our cycle is known. The
known starting vertex is referred to as v1. Let xij ∈ {0, 1} represent the
transitions from the vertex vi to vj, i.e. xij = 1 whenever the edge {vi, vj} is
in the cycle and xij = 0 otherwise. Then, we solve the following problem to
obtain the longest cycle, which includes v1:

max
n∑
i=1

n∑
j=1

cijxij, (9)

where cij = 1 if vertices vi and vj are adjacent and cij = 0 otherwise:

cij =

{
1 {vi, vj} ∈ E
0 {vi, vj} /∈ E

, (10)

subject to:

n∑
i=1

xij −
n∑
i=1

xji = 0, j = 1, 2, ..., n, {vi, vj} ∈ E, (11)

n∑
i=1

xij +
n∑
i=1

xji ≤ 2, j = 1, 2, ..., n, {vi, vj} ∈ E, (12)

n∑
i=1

n∑
j=1

cijxij ≥ 3, {vi, vj} ∈ E, (13)

yij ≤ (n− 1)xij, i = 2, 3, ..., n, j = 1, 2, ..., n, {vi, vj} ∈ E, (14)

2
∑

j=1,j 6=i

yij − 2
∑

j=2,j 6=i

yji −
∑

j=1,j 6=i

xij −
∑

j=2,j 6=i

xji = 0, (15)
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i = 2, 3, ..., n, {vi, vj} ∈ E,

where yij ≥ 0. Values yij represent a flow on the edges of the graph, which
is used to ensure that the resulting subgraph is a single cycle, rather than
a union of several disjoint cycles. It is straightforward to adapt this ILP
program to cases with the starting vertex being different to v1. In the next
step, we prove that this ILP formulation corresponds to the problem of the
longest cycle containing v1.

Theorem. Let the vertices of an undirected graphG = [V,E] without loops be
v1, v2, ..., vn. Then, our ILP formulation of the longest simple cycle problem
with a fixed initial vertex corresponds to the problem of finding the longest
simple cycle C = [VC , EC ] such that v1 ∈ VC .

Proof. Let C = [VC , EC ] be a simple cycle of length k in graph G, with
vertices ordered vc0 = v1, vc1 , vc2 , ..., vck−1

. Then, the first three constraints
of the ILP program are met, since for each v ∈ VC , there is exactly one
transition from v and one transition to v in our ordering. There are no
transitions from and to vi if vi /∈ VC , which meets the constraints (11) and
(12), too. We have that k ≥ 3, i.e. the constraint (13) is met.

Consider a flow on the edges of G such that ycici+1
= i for each i =

0, 1, 2, ..., k − 2 and yij = 0 if {vi, vj} /∈ EC . Then, the capacity constraint
(14) is true, since k − 1 ≤ n − 1. For the constraint (15), consider the
transitions for a vertex vi ∈ VC first. Let vi = vc` , i.e. let it be the (`+ 1)-st
vertex in the ordering of vertices in the cycle. Then, the difference in the
flow out and in the vertex is:∑

j=1,j 6=i

yij −
∑

j=2,j 6=i

yji = `− (`− 1) = 1, (16)

which is equal to:

1

2

[ ∑
j=1,j 6=i

xij +
∑

j=2,j 6=i

xji

]
=

1

2
(1 + 1) = 1. (17)

This proves that every simple cycle in G meets the constraints of our ILP
program.

For the inverse implication, we have that the constraints (11) and (12)
can only be met if for each i = 1, 2, ..., n, one of two situations takes place.
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The first case holds if there is exactly one j′ and one j′′ such that xij′ = 1
and xj′′i = 1, with other values xij and xji being zero for our vertex vi and
for j /∈ {j′, j′′}.

The second case is that all values xij and xji are zero for vertex vi. If
we assume that xij′ = 1 and xj′′i = 0 for some j′ and j′′, this could satisfy
constraint (12) but would not satisfy constraint (11).

Constraint (13) only ensures that there are at least three chosen transi-
tions which holds for all simple cycles. This already implies that an assign-
ment of values to xij meeting the first three constraints leads to a simple
cycle in G or a union of multiple disjoint simple cycles in G.

For the flow-based constraints, let us consider a union of two disjoint
simple cycles of lengths k and t such that k + t ≤ n and vertex v1 belongs
to the cycle of length k. Consider the ordering vc0 = v1, vc1 , vc2 , ..., vck−1

of
vertices in the cycle of length k. Then, a flow i ≤ ycici+1

≤ n− 1, with each
vertex incrementing the flow by one for each i = 0, 1, ..., k−2, will fulfil both
of the flow-based constraints, similarly to the arguments above.

At this point, consider the simple cycle of length t, with the ordering
vck , vck+1

, ..., vck+t−1
of its vertices. Then, we have that i ≤ yck+ick+i+1

≤ n− 1
represent the feasible values of flow for this cycle, with each vertex incre-
menting the flow by one. However, this means that the difference between
the incoming and the outcoming flow for vck will be:∑

j=1,j 6=i

yckj −
∑

j=2,j 6=i

yjck = t− 1 > 1, (18)

since each vertex on the cycle contributes to the flow by one. This is in contra-
diction with our premises, since only v1 is exempt from this
constraint. �

This already establishes that our ILP formulation is correct for the restricted
variant of the longest simple cycle problem. The general longest simple cycle
problem will then be solved as a sequence of consecutive ILP problems with
different fixed initial vertices. As the problem is NP-hard, computational
complexity of this approach is exponential in the worst case. There are 2m

possible feasible and infeasible assignments of binary values to xij, where m
is the number of edges in the graph.

It is worth mentioning that it is also possible to extend the formulation
presented above to obtain a general ILP for the longest simple cycle problem.
However, our preliminary experiments indicated that the ILP solver seems
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to be more efficient if the sequence of elementary ILP problems are solved,
rather than one large ILP problem. This is probably due to the fact that
large infeasible regions are induced in the search space by the addition of
more constraints.

The general formulation uses the idea of introducing a dummy vertex as
a source for the flow and the cycle and searches for the longest cycle from
the source. It follows from the assumption that the longest cycle of the
graph with the source vertex can be transformed into the longest cycle of the
original graph if and only if the neighbours of the source vertex on the cycle
are adjacent. Therefore, we are searching for the longest simple cycle of the
graph with the source vertex such that the source vertex, and its neighbours
on the cycle form a triangle.

Let the source vertex be v0 and let it be adjacent to all other vertices.
Then, one can solve the ILP problem above on the graph with the initial
vertex v0 and introduce dummy variables zij ∈ {0, 1}. These variables rep-
resent the choice of the single edge, which ensures that our longest cycle in
the modified graph can be transformed into the longest cycle of the original
graph by substituting transitions x0j and xi0 with transition xij, for which
zij = 1. The additional constraints, which assure that v0, vi and vj form a
triangle, are the following:

n∑
i=1

n∑
j=1

zij = 1, (19)

x0j + xi0 − 2zij ≥ 0, i, j = 1, 2, 3, ..., n. (20)

Note that the optimal value of the objective function for this formulation is
actually higher than the length of the longest cycle by 1, due to the intro-
duction of the dummy vertex.

2.3. Pipeline Design for the Exact Approach

A general formulation of the longest cycle problem was created. We have
found that this approach was less efficient at finding the longest cycle in
comparison to creating a sequence of ILP programs for fixed initial vertices.
Therefore a pipeline was created to handle this sequence.

Figure 2 shows the process describing the data mining pipeline. We begin
by first pruning the leaves of the graph, as these cannot form a cycle. This
pruning is iterated until the graph contains no leaves. We then check for any
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Figure 2: Our process of the search for the longest cycle using an exact approach based
on fixed initial vertex. The process starts by pruning the leaves of the graph and follows
by generating a sequence of ILP instances for randomly chosen fixed initial vertices.
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unprocessed vertices, should none exist then a suboptimal cycle has been
found. If an unprocessed vertex has been found, we pick a random vertex
from the remaining unprocessed vertices to be our fixed initial vertex.

We then generate an ILP instance with the fixed initial vertex based on
our formulation or Dixon and Goodman’s formulation. The instance is solved
by an ILP branch-and-cut solver. Optimality of the output is checked. The
initial vertex is then marked as processed. If an optimal solution has not
been found, we begin to process the next available vertex, should one exist.
However if an optimal solution has been found, we check if its length is higher
than the highest length found so far, and possibly replace the current best
cycle. We then decrease the amount of remaining vertices to process. This
amount is then compared to the current longest cycle length. If it is less than
the current longest cycle length, a provable optimum has been found and the
process terminates. Otherwise we continue to process the next available
vertex, should one exist.

3. Heuristic Methods for the Longest Cycle Problem

Apart from the exact approaches, approximation algorithms and heuris-
tics are of a high interest for detection of long cycles in the more difficult
problem instances. Some approximation algorithms use recursive disjoint
cycle detection procedures [7]. Other algorithms employ detection of cycles
to enlarge other cycles. This makes the methods possible to be used in an
iterated way [17].

Some earlier approximation algorithms have used two phases, combining
depth-first search (DFS) for sampling of the initial solution with dynamic
programming as the second phase [9].

In this section we present an algorithm which uses DFS to sample an
initial long cycle, with four perturbation operators used in a local search to
enlarge this cycle. DFS is used to sample long paths and filter those which
can be “closed” to cycles. In each branching step of DFS the neighbours are
scanned in a random order. This allows the usage of DFS as a randomised
algorithm.

The pseudocode of our version of DFS is given in Algorithm 1. In step
1, we start with an empty cycle C and set the initial cycle length l to 0.
An iterative procedure over all vertices follows. Let vcentral be the vertex,
from which we start constructing the cycle. We use a stack of vertices S
and functions d(v) and p(v) which denote the distance of v from vcentral and
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a binary value, which indicates if v has already been processed by DFS. In
step 6, we pop the current vertex from S and process it if it has not been
processed within DFS yet. The neighbours of v are scanned in step 9 in a
random order. Let w be the current neighbour in this scanning. Then, steps
10-13 are used to ensure that if the path from vcentral through v to w is longer
than the one previously sampled, then w is moved to the top of the stack
S. This makes the algorithm prefer longer paths. Also, we use array parent
to record predecessors of vertices in DFS, to be able to trace the final long
cycle. In steps 14-16, we update the current longest cycle C if vcentral was
reached once again and its length dc is the highest length found so far.

When the DFS is finished, we use a local search approach to enlarge
the initial long cycle. Four perturbation operators are used. Two of these
operators serve as improvement operators which enlarge the current cycle by
substituting subpaths of length 1 with subpaths of length 2 or 3. Two other
operators represent the plateau exploration operators which substitute paths
of lengths 2 or 3 by paths of the same length. All four perturbation operators
are depicted in Figure 3.

In the following, we will define the the four perturbation operators for-
mally. However, let us first formulate a few common terms for all operators.
Let C = [vc1 , vc2 , ..., vck ] be a cycle of length k on vertices of graph G = [V,E].
Let VC be the set of vertices in C and let EC be the set of edges in C. Then,
the perturbation operators will be defined as follows.

Perturbation operator 1 (triangular improvement operator). If there is a ver-
tex w ∈ V \VC such that for some i it holds that {vci , vci+1

} ∈ EC and vertices
vci , w, vci+1

form a triangle, then G also contains a cycle C ′ = {vc1 , vc2 , ..., vci ,
w, vci+1

..., vck} of length k + 1.

Perturbation operator 2 (rectangular improvement operator). If there are ver-
tices w1, w2 ∈ V \VC such that {w1, w2} ∈ E and for some i it holds that
{vci , vci+1

} ∈ EC and the sequence [vci , w1, w2, vci+1
] represents a cycle of

length 4, then G also contains a cycle C ′ = {vc1 , vc2 , ..., vci , w1, w2, vci+1
..., vck}

of length k + 2.

Perturbation operator 3 (plateau exploration operator 1). If there is a ver-
tex w ∈ V \VC such that for some i it holds that {vci−1, vci} ∈ EC and
{vci , vci+1

} ∈ EC , then if {vci−1, w} ∈ E and {w, vci+1
} ∈ E as well, then G

also contains a cycle C ′ = {vc1 , vc2 , ..., vci−1
, w, vci+1

, ..., vck} of length k.
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Algorithm 1. Identifying long cycles using Depth-first Search (DFS)

Input: graph G = [V,E]
Output: cycle C = [vc1 , vc2 , ..., vck ]

1 C = [], l = 0
2 for each vcentral ∈ V
3 ∀v ∈ V let d(v) = 0, p(v) = 0
4 S = [vcentral]
5 while S contains at least one vertex
6 v = pop(S)
7 if p(v) = 0
8 dc = d(v), p(v) = 1
9 for each w such that {v, w} ∈ E in

a random order
10 if p(w) 6= 0 ∧ w 6= vcentral ∧ d(w) ≤ dc + 1
11 remove w from S if it currently is in S
12 S = push(w)
13 d(w) = dc + 1, parent(w) = v
14 if w = vcentral ∧ dc ≥ 2 ∧ l < dc + 1
15 l = dc + 1
16 use array parent to trace and update

the current longest cycle C to vcentral
17 return C
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Figure 3: Perturbation operators used in our local search algorithm for the longest cycle
problem. On the left-hand side, the perturbation operators 1 (triangular improvement
operator, above) and 2 (rectangular improvement operator, below) are depicted. If there
is an edge on the cycle, which lies in a triangle or a rectangle with the corresponding
vertices lying outside of the cycle, then the edge can be substituted by the two or three
edges. On the right-hand side, we illustrate the perturbation operator 3 (the plateau
exploration operator 1, above) and the perturbation operator 4 (the plateau exploration
operator 2, below). In these cases, a subpath of the cycle on three or four vertices is
substituted by an alternative subpath with the same number of vertices.

15

©2018, Elsevier. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/



Perturbation operator 4 (plateau exploration operator 2). If there are ver-
tices w1, w2 ∈ V \VC such that {w1, w2} ∈ E and for some i it holds that
{vci−2

, vci−1
} ∈ EC , {vci−1

, vci} ∈ EC and {vci , vci+1
} ∈ EC , then if {vci−2

, w1} ∈
E, and {w2, vci+1

} ∈ E as well, then G also contains a cycle
C ′ = {vc1 , vc2 , ..., vci−2

, w1, w2, vci+1
, ..., vck} of length k.

These perturbation operators effectively use the properties of real-world com-
plex networks. One of the properties being used is often represented by the
clustering coefficient metric, which is defined as a ratio of the number of
triangles to the number of all connected triplets of vertices [1]. Many real-
world networks have relatively high clustering coefficients, which means that
many connected triplets form triangles in these networks. This holds both
for the lattice-based small worlds such as the networks generated by the
Watts-Strogatz model [45, 46], as well as the scale-free networks generated
by models such as the Barabási-Albert preferential attachment model [4].
This observation supports the use of the triangular perturbation operator.
On the other hand for grid-based networks, the rectangular operator seems
to be a much more valid choice. The underlying structure tends to be regular
mesh, for which the triangular operator will not be suitable.

The plateau exploration operators also use the properties of complex net-
works. Perturbation operator 3 substitutes one connected triplet in the cycle
by an alternative connected triplet. Perturbation operator 4 represents a sim-
ilar idea of “second order”, substituting a connected 4-tuple by an alternative
connected 4-tuple.

4. Selected Results

In this section, we present the results selected from the extensive com-
putational experiments we performed. In the following, we will first focus
on the general experimental design. Next, we present the numerical results
of our exact approach, its comparison to the approach based on Dixon and
Goodman’s formulation [14], as well as numerical results obtained by the
heuristic.

4.1. Experimental Design

For the exact approaches, we have used the open-source branch-and-cut
ILP solver CBC from the COIN-OR package [10, 30]. The problem was solved
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as a sequence of ILP programs generated for different starting vertices. Each
of these programs was solved using CBC with a predefined time limit.

In our experiments we applied three different time limits. 1 minute per
vertex, 10 minutes per vertex and 1 hour per vertex were used. For each of
the integer programs with the fixed initial vertex, the ILP solver can reach
the optimum or obtain a timeout and a possibly suboptimal solution. If the
number of vertices which can still potentially form a cycle is not higher than
the best subproblem solution found so far, then this solution can be deemed
optimal. This allowed us to categorise the problem instances, based on the
time limit that was sufficient to solve the instance based on our formulation.

Easy instances are those for which the optimum was found with 1 minute
time limit per vertex. Medium difficulty instances were solved using 10
minute time limit per vertex. The rest of the graphs were classified as hard
instances.

The data mining pipeline was implemented as a Python script. This script
manages both the initial vertex choice and the ILP program generation. This
involves launching CBC and maintaining whether the optimum has been
found or another integer program has to be generated.

The heuristic approach was implemented in C++ using the Qt toolkit.
Similarly to the exact approach, the heuristic was also applied to the graphs
obtained by iterative pruning of the leaves.

All experiments were run on an Apple Mac Pro running OS X El Capitan
with a 3.5GHz 6-Core Intel Xeon E5 CPU and with 16 GB 1866 MHz DDR3
RAM.

It is worth noting that pruning of the leaves can significantly reduce the
instance size. For example, the network gplus 200 of 200 vertices representing
the public circles data from Google+ was reduced from 200 to 118 vertices.
This improves the performance of both of the exact approaches and the
heuristic.

For the experimental evaluation, we have used a wide range of real-world
networks of small to medium sizes. The data set represents networks from
four different sources and includes social networks, a research collaboration
network, a neural network, coappearance networks for literary classics and
protein-protein interaction networks.

These included a small 52-vertex sample of a social network, as well as
larger samples from social networks Google+ and Pokec which is a Slovak so-
cial network [39]. A large-scale snapshot of this network is a part of the SNAP
network data set [29]. Graphs from Newman’s network data repository come
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from diverse domains. Network adjnoun represents adjective-noun adjacen-
cies for David Copperfield, football is an American college football network
and lesmis is a coappearance network for Les Miserables. Other networks
include netscience which represents network science collaborations, zachary
is a social network of a karate club, celegansneural is a neural network
for nematode worm Caenorhabditis elegans, dolphins is a social network of
bottlenose dolphins and polbooks represents a network of books about US
politics.

The next subset of instances are the protein-protein interaction net-
works from the UCLA database of interacting proteins [38, 47, 48, 49].
These networks can represent the full data, “core” data (this is indicated
by the CR suffix) or high-throughput data (which is indicated by the HT
suffix). Celeg20160114CR represents a protein-protein interaction network
for Caenorhabditis elegans. Dmela20160114CR is a network for Drosophila
melanogaster, the fruit fly. Ecoli20160114CR represents the protein-protein
interactions for Escherichia coli. Hpylo20160114 is the network for Helicobac-
ter pylori, a bacterium associated with chronic gastritis. Hsapi20160114HT
is a high-throughput human protein-protein interaction network. Last but
not least, Mmusc20160114CR is a protein-protein interaction network for the
house mouse.

The last group represents the coappearance networks for several literary
classics from the DIMACS graphs [24]. Instance anna represents the network
for Anna Karenina, david is the coappearance network for David Copperfield,
homer is the network for Iliad and Odyssey and huck represents the network
for Huckleberry Finn.

4.2. Numerical Results

In our experiments, we embedded both the ILP approach based on our
formulation and Dixon and Goodman’s formulation into the data mining
pipeline. Both formulations represent the problem of finding the longest
simple cycle with fixed initial vertex. We have used experiments with time
limit of 1 minute per vertex to compare the efficiencies of the approaches.

These results are summarised in Table 1. The rows represent the networks
in which we searched for the longest cycle. The columns represent the length
of the longest cycle found and time taken in seconds to find this cycle by our
approach (our ILP formulation column) and the previous approach (Dixon
and Goodman’s ILP formulation column). If the column named optimum
contains a numerical value, it is the proven optimum. If the cycle length
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starts with the ≥ sign, then the value represents a lower bound of the longest
cycle length, i.e. the cycle has not been proven to be the longest within the
time limit. If N/A is included instead of a numerical value, then no cycle has
been found within the time limit.

These results show that the approach based on our formulation signifi-
cantly outperforms the equivalent approach based on the previous formula-
tion. Our formulation led to 11 out of 22 instances being solved within this
time limit. Whereas, the previous formulation found the provable optima
only for 3 instances. The time taken to find these solutions also indicates
that the approach based on our formulation takes considerably less computa-
tional time to produce equivalent solutions. This is most probably due to the
number and the character of our flow-based constraints, which seem to lead
to a less constrained search space. We have also performed equivalent exper-
iments with 10 minute time limit, which we omit due to space limitations.
It is worth noting that the previous formulation led to 5 out of 22 solutions
being found. This is still considerably less successful than our approach with
1 minute time limit.

Table 2 presents the results we obtained using our exact approach. The
columns represent the three strategies with 1 minute, 10 minute and 1 hour
time limit. The meanings of numerical values and symbols in the table are
equivalent to their respective meanings in Table 1.

We used these experiments with our formulation to categorise the in-
stances into easy, medium and hard difficulty. The results in Table 2 indi-
cate that for the 22 networks we studied, 11 instances were easy, 3 were of
a medium difficulty and 8 instances remained hard. If an instance has been
solved within a shorter time limit, we omit the experiments with higher time
limits.

Easy instances included soc 52, adjnoun, football, lesmis, zachary, dol-
phins, polbooks, Celeg20160114CR, Dmela20160114CR, Hsapi20160114HT
and huck. For these instances the longest cycle was found in less than an
hour. All four categories have a representative between the easy instances.
There seems to be no correlation between the application domain from which
the instance comes and the difficulty of the instance.
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Medium difficulty instances can be solved optimally with a less restrictive
time limit of 10 minutes per vertex. These include gplus 200, celegansneural
and david.

Instances categorised as hard could not be solved with any time limit.
These include gplus 500, pokec 500, netscience, Ecoli20160114CR,
Hpylo20160114, Mmusc20160114, anna and homer.

It is worth noting that the structure of the graph seems to be the main
factor that influences the difficulty. For example anna seems to be a hard
instance despite its relatively low number of vertices. The social networks
with 500 vertices were categorised to hard instances while the social network
with 200 vertices has fallen into the medium difficulty. This indicates that
the size of the graph is determining the difficulty but is not the only factor.

Summarising the results of our exact approach, we have found the optimal
solutions for 14 out of 22 instances.

In Table 3, we include the results of the heuristic approach. The variants
of the heuristic we have used include a version with perturbation operators
1, 2 and 3 (MSLS-10000-III) and a version with all 4 perturbation operators
(MSLS-10000-IV). A multi-start version of the heuristic was used with 10000
consecutive runs. This is due to the fact that perturbation operator 4 helps
to provide better results for some instances. However, for a majority of the
instances the variant with the 3 operators was more efficient. An extended
variant with 100000 runs was also used. Based on the results from 10000
runs, only the perturbation operators 1, 2 and 3 were used in this variant
(MSLS-100000-III).

The heuristic was able to find the optimal solutions for most of the easy
instances. For 8 out of 11 easy instances, both MSLS-10000-III and MSLS-
10000-IV were able to find the optimum. For Hsapi20160114HT, MSLS-
100000-III was able to find the longest cycle. This is the cycle depicted in
Figure 1. For adjnoun and polbooks, only suboptimal solutions were found
by the heuristic approach.

For the medium difficulty instances, the heuristic approach produces so-
lutions with varied quality. For gplus 200 and david, the obtained results are
very close to the optimum. However, the longest cycle found for celegansneu-
ral is still 9 vertices shorter than the optimum.

For the hard instances, the exact approach has only found suboptimal
solutions. Apart from netscience, these solutions are consistently better than
the solutions found by the heuristic. However, the gap between the length
of a cycle found by the exact approach and the heuristic varies between
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Table 1: Computational results of the exact approach based on our ILP formulation and
CBC (on the left-hand side), compared to the results of an exact approach based on the
original problem formulation [14]. Both approaches were used with a time limit of 1
minute per vertex. N/A indicates that no cycle has been found within the time limit.
These results indicate that the approach based on our formulation clearly outperforms the
approach based on the original formulation.

Graph CBC CBC
(1 min / vertex) (1 min / vertex)

our ILP Formulation Dixon and Goodman’s
ILP Formulation

optimum time optimum time
Social networks

gplus 200 ≥ 70 5117 s ≥ 60 6887 s
gplus 500 ≥ 8 16353 s N/A 18375 s
pokec 500 ≥ 127 17485 s N/A 20005 s
soc 52 51 15 s 51 2034 s

Graphs from Newman’s network data repository
adjnoun 101 207 s ≥ 100 6063 s
football 115 4 s ≥ 113 7147 s
lesmis 49 490 s ≥ 49 3683 s
netscience ≥ 88 25495 s N/A 66573 s
zachary 20 19 s ≥ 20 1616 s
celegansneural ≥ 279 17959 s N/A 17150 s
dolphins 53 ≤ 1 s 53 22 s
polbooks 105 60 s ≥ 103 6003 s
Protein-protein interactions from UCLA database of interacting proteins
Celeg20160114CR 6 ≤ 1 s 6 199 s
Dmela20160114CR 14 49 s N/A 5342 s
Ecoli20160114CR ≥ 8 18380 s N/A 21695 s
Hpylo20160114 N/A 26484 s N/A 25364 s
Hsapi20160114HT 64 1959 s ≥ 61 5167 s
Mmusc20160114CR ≥ 170 22012 s N/A 32981 s

DIMACS graphs
anna ≥ 77 6490 s ≥ 75 6522 s
david ≥ 72 4621 s ≥ 66 4685 s
homer ≥ 114 18309 s N/A 19412 s
huck 48 858 s N/A 3734 s
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Table 2: Detailed computational results of the exact approach based on our ILP formula-
tion and CBC. Three versions of the approach were used with time limits of 1 minute, 10
minutes and 1 hour per vertex for each instance. Whenever an instance was successfully
solved with a lower time limit, the experiments with a higher time limit have been omit-
ted. This strategy allowed us to categorise the instances to easy, medium and hard. Such
a categorisation is based on whether the more restrictive versions of the exact approach
were successful in finding the proven optimum or not. N/A indicates that no cycle has
been found within the time limit.

graph CBC CBC CBC
(1 min / vertex) (10 min / vertex) (1 hour / vertex)

optimum time optimum time optimum time
Social networks

gplus 200 ≥ 70 5117 s 70 30850 s
gplus 500 ≥ 8 16353 s ≥ 202 157858 s ≥ 206 942816 s
pokec 500 ≥ 127 17485 s ≥ 163 168396 s ≥ 166 1003664 s
soc 52 51 15 s

Graphs from Newman’s network data repository
adjnoun [35] 101 207 s
football [19] 115 4 s
lesmis [27] 49 490 s
netscience [35] ≥ 88 25495 s ≥ 104 194185 s ≥ 107 868606 s
zachary [51] 20 19 s
celegansneural [46] ≥ 279 17959 s 280 2785 s
dolphins [32] 53 ≤ 1 s
polbooks* 105 60 s
Protein-protein interactions from UCLA database of interacting proteins [38, 49, 47, 48]

Celeg20160114CR 6 ≤ 1 s
Dmela20160114CR 14 49 s
Ecoli20160114CR ≥ 8 18380 s ≥ 242 179389 s ≥ 244 1068437 s
Hpylo20160114 N/A 26484 s ≥ 291 260322 s ≥ 299 1551768 s
Hsapi20160114HT 64 1959 s
Mmusc20160114CR ≥ 170 22012 s ≥ 256 215912 s ≥ 267 1282218 s

DIMACS graphs [24]
anna ≥ 77 6490 s ≥ 79 64498 s ≥ 79 387458 s
david ≥ 72 4621 s 72 4714 s
homer ≥ 114 18309 s ≥ 223 171157 s ≥ 234 1015438 s
huck 48 858 s

* Network polbooks has not been published in a past paper. It is available from Newman’s network data

repository: http://www-personal.umich.edu/∼mejn/netdata/.

22

©2018, Elsevier. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/



Table 3: Computational results of the multi-start local search heuristics with 10000 trials
with 3 or 4 perturbation operators (MSLS-10000-III and MSLS-10000-IV) and 100000
trials with 3 perturbation operators (MSLS-100000-III). Their comparison to the proven
longest cycle lengths (or their lower bounds) found by the exact approach based on CBC
is included.

graph CBC MSLS-10000-III MSLS-10000-IV MSLS-100000-III
cycle time cycle time cycle time
length length length

Social networks
gplus 200 70 67 65 s 66 50 s 68 729 s
gplus 500 ≥ 206 186 606 s 186 560 s 192 6891 s
pokec 500 ≥ 166 155 663 s 151 598 s 159 7158 s
soc 52 51 51 25 s 51 23 s 51 280 s

Graphs from Newman’s network data repository
adjnoun [35] 101 91 78 s 92 62 s 93 967 s
football [19] 115 115 103 s 115 93 s 115 1246 s
lesmis [27] 49 49 18 s 49 14 s 49 204 s
netscience [35] ≥ 107 107 531 s 107 524 s 108 5944 s
zachary [51] 20 20 4 s 20 2 s 20 52 s
celegansneural [46] 280 270 2147 s 267 1960 s 271 27953 s
dolphins [32] 53 53 7 s 53 7 s 53 94 s
polbooks* 105 104 73 s 103 65 s 104 802 s
Protein-protein interactions from UCLA database of interacting proteins [38, 49, 47, 48]
Celeg20160114CR 6 6 1 s 6 6 s 6 5 s
Dmela20160114CR 14 14 3 s 14 3 s 14 43 s
Ecoli20160114CR ≥ 244 207 894 s 205 849 s 211 11208 s
Hpylo20160114 ≥ 299 239 1818 s 235 1674 s 241 21357 s
Hsapi20160114HT 64 63 22 s 63 17 s 64 253 s
Mmusc20160114CR ≥ 267 243 728 s 248 712 s 246 8353 s

DIMACS graphs [24]
anna ≥ 79 76 96 s 77 112 s 77 1316 s
david 72 71 50 s 70 45 s 71 608 s
homer ≥ 234 206 1508 s 205 1468 s 209 17981 s
huck 48 48 24 s 48 21 s 48 284 s
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Figure 4: Distributions of cycle lengths sampled by the multi-start local search approach
MSLS-100000-III for the easy instances.

instances. For anna, the exact approach found a suboptimum on 79 vertices
while the heuristic found a cycle on 77 vertices. However, for Hpylo20160114
the exact approach found a suboptimum on 299 vertices while the result of
the heuristic was more distant with 241 vertices.

The instance netscience is particularly interesting, since the heuristic
found a cycle of length 108. On the other hand, the exact approach with
1 hour time limit per vertex only found a cycle of length 107. This is some-
what surprising and seems to be related to the structure of this graph. Note
that MSLS-10000-III and MSLS-10000-IV were able to find a cycle on 107
vertices in minutes, while the exact approach needed more than a week to
produce such a cycle. This indicates that although the exact approach usu-
ally provides better results, the heuristic can perform surprisingly well for
certain instances.

5. Discussion

The heuristic approach performs a sequence of samplings of long simple
cycles using DFS and their improvement using a local search approach with
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Table 4: The statistical properties of cycle length distributions obtained by MSLS-100000-
III. This includes the longest cycle length found, the average cycle length µ, the standard
deviation σ, the skewness γ1 and the “excess” kurtosis γ2 for each distribution.

graph optimum MSLS-100000-III
best µ σ γ1 γ2

Social networks
gplus 200 70 68 59.46 2.8421 -0.42985 -0.040028
gplus 500 ≥ 206 192 161.33 7.2337 -0.031828 -0.083499
pokec 500 ≥ 166 159 130.83 8.1637 -0.41967 -0.058592
soc 52 51 51 46.202 1.5434 -0.15057 -0.44118

Graphs from Newman’s network data repository
adjnoun [35] 101 93 83.852 2.3339 0.0088051 -0.066728
football [19] 115 115 114.96 0.19147 -5.313 28.502
lesmis [27] 49 49 43.772 2.5782 -0.67178 -0.27657
netscience [35] ≥ 108 108 92.438 5.4751 -0.21830 -0.25129
zachary [51] 20 20 18.684 0.74029 -0.15538 -0.053173
celegansneural [46] 280 271 260.33 2.884 -0.11364 0.005146
dolphins [32] 53 53 49.323 1.6584 -0.30721 0.081956
polbooks 105 104 97.632 2.1877 -0.54051 -0.058592
Protein-protein interactions from UCLA database of interacting proteins [38, 49, 47, 48]
Celeg20160114CR 6 6 6 0 N/A N/A
Dmela20160114CR 14 14 13.943 0.23244 -3.8124 12.548
Ecoli20160114CR ≥ 244 211 183.21 6.1459 -0.01982 -0.013013
Hpylo20160114 ≥ 299 241 214.22 5.2453 0.23223 0.10657
Hsapi20160114HT 64 64 55.581 2.8587 -0.17028 -0.30979
Mmusc20160114CR ≥ 267 246 207.74 9.4577 0.077919 -0.074851

DIMACS graphs [24]
anna ≥ 79 77 67.081 3.1581 -0.41567 0.243
david 72 71 63.918 2.5469 -0.61604 0.54436
homer ≥ 234 209 183.03 6.457 -0.045365 -0.0058615
huck 48 48 45.273 1.6975 -0.85419 1.6703

our perturbation operators. Therefore, we are interested in the distribution of
cycle lengths sampled in different runs. We have explored these distributions
for MSLS-100000-III.

Figure 4 illustrates the distributions we obtained for the easy instances.
For most of the instances, the peaks of the distributions are located near
the far end of the distributions. The probability of sampling a cycle which is
longer than the peak length seems to decline quite rapidly. Therefore, we have
decided to measure the statistical properties of these distributions. Apart
from the mean and the standard deviation, these properties also include the
skewness and the kurtosis.

Table 4 presents these properties for each distribution X obtained for
each graph. The columns of the table represent the optimum, the best result
obtained by MSLS-100000-III, the mean (µ), the standard deviation (σ),
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Figure 5: Distributions of cycle lengths sampled by the multi-start local search approach
MSLS-100000-III for the medium difficulty instances.
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Figure 6: Distributions of cycle lengths sampled by the multi-start local search approach
MSLS-100000-III for the hard instances.

the skewness (γ1 = E[(X −µ)3]/σ3) and the “excess” kurtosis (γ2 = E[(X −
µ)4]/σ4−3). Based on these results, a distribution with a low value of γ1 and
a high value of γ2 seems to indicate an easy instance. On the other hand, the
distribution for adjnoun has both γ1 and γ2 close to 0. Since adjnoun was the
only easy instance for which MSLS-100000-III was relatively far away from
the optimum, a distribution close to a normal distribution may indicate that
the heuristic is less efficient. It is also worth noting that apart from adjnoun,
γ1 < 0 for all easy instances.

On a related note, the distributions seem to differ from instance to in-
stance. The profile for polbooks suggests that sampling of the longest cycle
may be possible with an increased number of runs.

Figure 5 illustrates the distributions we obtained for the medium difficulty
instances. Compared to the easy instances, the plots for medium difficulty
indicate more fine-grained distributions. For all of these instances we have
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that γ1 < 0. However the distribution for celegansneural has γ1 and γ2
close to 0. Similarly to adjnoun, the heuristic has not managed to find the
optimum for this instance. This indicates that a more sophisticated approach
may be more suitable for this type of difficulty. Hybrid heuristics such as
evolutionary algorithms or algorithms based on swarm intelligence may be
the suitable tools to overcome the local optima for these instances. It is also
worth noting that the distributions obtained by different heuristics can be
used as a promising tool to compare the efficiency of different approaches.

Such algorithms could also be beneficial for the hard instances. The
distributions are depicted in Figure 6. Apart from the instance anna, the
distributions seem to have similar fine-grained profiles. For most of these
instances the heuristic has found cycles with moderate length. The results of
the exact approach indicate that providing significantly longer cycles seems
to require quite extensive computational efforts.

It is worth noting that the perturbation operators contributed to these
values relatively significantly. DFS used as an initialisation procedure for
our heuristic provides moderately long cycles. The perturbation operators
1 and 2 use the typical properties of real-world networks to enlarge such
a cycle. While the perturbation operator 1 seems to work well for graphs
with significant community structure, perturbation operator 2 seems to be
suitable for graphs where the underlying structure is a grid. The role of the
perturbation operators 3 and 4 was in searching in the areas of the search
space with equally long cycles. For a majority of the instances, perturbation
operator 3 was found to be the more efficient plateau exploration operator.

This work can also be used as a basis for more application oriented studies.
Topics such as layout algorithms for social and biological networks [5, 19],
drawing of planar graphs [40] or the closely related longest path problem
[25, 42] can be the avenues to explore.

6. Conclusions

We have proposed two approaches to find long simple cycles in real-world
complex networks. The first technique is an exact approach based on our
integer linear programming (ILP) formulation of the problem. The exact ap-
proach utilises a data mining pipeline which solves the longest simple cycle
problem as a sequence of these ILP programs for different fixed initial ver-
tices. The experimental results have shown that our approach considerably
outperforms an equivalent approach based on a previous ILP formulation of
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the problem. Our approach can also be used to find the provably longest
cycle for graphs of small to medium size.

The second technique is a heuristic which combines an initial construc-
tion of a long simple cycle using depth-first search with several perturbation
operators used to improve this initial solution. Multi-start versions of this
heuristic provide relatively long cycles in a limited time. For easier and
medium difficulty instances the heuristic provided optimal or near-optimal
solutions to the problem. For very large instances the exact approach be-
comes unscalable, possibly requiring weeks or even months of computation.
For these instances the heuristic approach is much more valuable for real-
world applications.

We believe that our study can form a basis for further explorations of
the problem in real-world scenarios. The applications in social and biological
networks represent one such route. For large scale instances of the problem
new heuristics combining different ideas and operators may contribute to
develop more scalable approaches suitable for finding even longer cycles.

In summary this paper has laid down the fundamental ideas for practical
algorithms which can be used to find long cycles in real-world networks.
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