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Abstract 
 
This paper proposes a multiple order-up-to policy based inventory replenishment scheme to 

mitigate the bullwhip effect in a multi-stage supply chain scenario, where various transportation 

modes are available between the supply chain (SC) participants. The proposed policy is similar to 

the fixed order-up-to policy approach where replenishment decision “how much to order” is 

made periodically on the basis of the pre-decided order-up-to inventory level. In the proposed 

policy, optimal multiple order-up-to levels are assigned to each SC participants, which provides 

decision making reference point for deciding the transportation related order quantity. 

Subsequently, a mathematical model is established to define optimal multiple order-up-to levels 

for each SC participants that aims to maximize overall profit from the SC network. In parallel, the 

model ensures the control over supply chain pipeline inventory, high satisfaction of customer 

demand and enables timely utilization of available transportation modes. Findings from the 

various numerical datasets including stochastic customer demand and lead times validate that – 

the proposed optimal multiple order-up-to policy based inventory replenishment scheme can be a 

viable alternative for mitigating the bullwhip effect and well-coordinated SC. Moreover, 

determining the multiple order-up-to levels is a NP hard combinatorial optimization problem. It is 

found that the implementation of new emerging optimization algorithm named Bacterial Foraging 

Algorithm (BFA) has presented superior optimization performances. The robustness and 

applicability of the BFA algorithm are further validated statistically by employing the percentage 

heuristic gap and two-way ANOVA analysis. 

 

Keywords: Bullwhip Effect; Optimal Order-up-to Inventory Level; Bacterial Foraging 

Algorithm; Supply Chain. 
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1. Introduction 

Logistics operations and the related decisions to ensure uninterrupted and timely product flow 

across different segments of the supply chain (SC) are of paramount importance. At each stage of 

the SC, the management of product flow depends on various issues such as inventory stocks, 

replenishment order quantities and utilization of efficient transportation facilities. The SC 

participants which are mutually dependent entities are equally significant in maintaining an 

uninterrupted flow of products across different stages of the SC. This follows from the fact that 

replenishment decisions of the participants imposes direct and indirect effects on the 

replenishment or manufacturing decisions of upstream SC members. However, when decisions 

have indirect and delayed feedback effects, it becomes difficult to control the dynamics of the 

material flows. Thus, the entire product flow management is subject to coordination risk as this 

may trigger instability in the SC product flow (Croson et al., 2005). One prominent outcome of 

this instability in the SC is the bullwhip effect, which is the main focus of this paper. 

 

The bullwhip effect refers to the phenomenon where variability of orders in the SC increases as 

one moves closer to the source of production (Metters, 1997; Yan and Katok, 2006). This 

suggests that orders on suppliers tend to have a larger variance than sales to buyers. As a result, 

the distortion propagates up-stream in an amplified form (Bray and Mendelson, 2012; Lee et al. 

1997 a, b). Inaccurate estimation of actual demand and the distortion of demand information from 

downstream to upstream end of the SC can increase the overall SC cost. The main consequences 

of distortions are observed in manufacturing as disrupted production schedules, higher raw-

material costs and overtime expenses. Studies also find that the negative effects on the SC are in 

the form of excessive inventories in SC pipeline, uncertain production planning, unsatisfactory 

customer service, and higher shipping costs (Lee et al., 1997 a. b.; Chen et al., 1998). Recent 

work highlighting the effect of global financial crisis on SC management suggests that 

manufacturers and wholesalers are slow in responding to changing demand conditions (Dooley, 

Yan, Mohan and Gopalakrishnan, 2010). This emphasises that bullwhip effect minimization is 

critical and of paramount importance for ensuring coordination between replenishment programs 

of the SC participants (Cachon, Randall and Schmidt, 2007). Within this context, researchers and 

practitioners in production planning are currently examining various alternatives to integrate 

aspects of the SC as a whole rather than as a group of individually distributed entities to establish 

proper coordination between the various SC participants. 
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Current research on the bullwhip effect can be broadly classified into two streams: first, work that 

analyses the bullwhip effect; and, second, efforts to solve the bullwhip effect problem in the SC. 

Nienhaus, Ziegenbein and Schoensleben (2006) attribute the bullwhip effect to human behaviour 

which involves over-ordering and panic behaviour due to stock depletion. Croson and Donohue 

(2006) demonstrate that biased decisions by the SC participants create bullwhip effect in the SC. 

Oliva and Goncalves (2005) also report similar results and confirm the above findings. Dooley et 

al. (2009) comment on the bullwhip effect in SCs and suggest that human agency and decision 

bias cannot be eliminated in the decision-making process. Simchi-Levi et al. (2008), Chopra and 

Meindl, (2001) report three major factors behind the bullwhip effect which include: (a) biased 

demand information from downstream SC members; (b) delayed information transferring; and, 

(c) unsuitable logistic operations. Lee et al. (2004a) argue that the distortion of demand 

information in the SC inherently causes the bullwhip effect, and that demand signal processing, 

lead time of replenishment, price fluctuations, order batching and rationing game contribute to the 

bullwhip effect generation. Niranjan, Metri and Aggarwal (2009), Lee et al. (1997a, 2000), and 

Chen et al. (2000a, b) propose various statistical methodologies to quantify the magnitude of 

variance amplification in the SC. In a recent survey, Shan et al. (2013) investigated the bullwhip 

effect in China using data on over 1200 companies. Their results represent that more than two-

thirds of the companies have exhibited the bullwhip effect. The measured approach proposed in 

the existing literature have supported to mitigate the bullwhip effect intensity. The intensity of the 

bullwhip effect in investigated companies has declined during the period from 2002 to 2009. 

The second stream of research, which focuses on resolving the bullwhip effect problem in the SC, 

has also been prominent. For instance, Ouyang and Daganzo (2006) suggest that accounting for 

future orders in existing ordering policies can mitigate the bullwhip effect. Dejonchheere et al. 

(2003) propose a control theory approach to quantify the bullwhip effect. Çetinkaya and Lee 

(2000) suggest Vendor-Managed Inventory (VMI) to mitigate the bullwhip effect, which 

authorizes the supplier to manage the inventory for each associated retailer. Cachon (1999) 

presents a scheduled ordering policy to manage SC demand variability. In this study, they 

observed that the lengthened order interval and increased batch size can decline demand variance 

in the upstream member. O’Donnell et al. (2006) suggest an ordering policy based replenishment 

program to track the demand pattern at each stage of the SC, though this leads to higher 

inventories in the long run.  

Kristianto et al.(2012) presented adaptive fuzzy control application to support a vendor managed 

inventory (VMI). The adaptive fuzzy VMI control surpasses fuzzy VMI control and traditional 

VMI in terms of mitigating the bullwhip effect and lower delivery overshoots and backorders.  
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Li (2012) advocated that limited information sharing increases the difficulty of reducing the 

bullwhip effect and leads to inefficient supply chain management. His research work explored 

new ways to reduce the bullwhip effect in supply chain systems that face uncertainties with 

respect to information sharing. 

Yungao et al. (2012) presented a study on forecasting techniques for the product order and 

inventory lever prediction. They derived the analytical expressions of the bullwhip effect on 

product orders and inventory using minimum mean-squared error, moving average and 

exponential smoothing forecasting techniques. The research concludes the conditions under 

which the three forecasting techniques (minimum mean-squared error, moving average and 

exponential smoothing) can be chosen to minimize the bullwhip effect.  

Recently, Dominguez et al. (2014) conducted a study to compare the bullwhip effect on a serial 

and a complex supply chain network (SCN). Responses of both SCNs for two different demand 

scenario such as stationary demand and an impulse demand is studied.  Devika et al. (2016) 

optimised the bullwhip effect and net stock amplification in the case of a three-stage supply chain 

under centralised and decentralised scenarios. The causes for bullwhip effect and net stock 

amplification were modelled using response surface methodology and a multi-objective 

evolutionary optimisation was proposed to minimise the negative effects. Seles et al (2016) 

documented a study on understanding the green bullwhip effect in a context of automotive green 

supply chain management (GSCM) in Brazil. De Almeida (2015) reviewed literature on the role 

of trust and collaboration that can lead to the mitigation of bullwhip effect in SCM. The results of 

this review highlighted the lack of studies addressing behavioural aspects to reduce bullwhip 

effect. Lin et al. (2014) proposed a system dynamics model to tackle bullwhip effects in a hybrid 

supply chain of an elevator manufacturing company. They analysed the variations in the service 

and product flow and proposed several performance metrics. It was found that the bullwhip effect 

of hybrid supply chain can be mitigated by adjusting the service capacity and using this 

adjustment in the inventory replenishment framework. Other studies, in terms of solution 

framework development have been also reviewed; for instance, Shukla and Senevi (2016) 

proposed a multi agent framework, which used fuzzy rough sets to optimise dynamic SC 

configuration decisions. Singh et al (2015) proposed a cloud computing framework for assessing 

the carbon footprint in a food supply chain. Tyagi et al (2013, 2011) used non-discrete ant colony 

optimisation and fuzzy goal programming model for the product development stages in a supply 

chain. Verma et al (2014) proposed a model for optimising capacity-planning problem in a multi 

plant SC problem.  
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It often happens that the SC participants opts either slow-transportation/fast-transportation or 

both/multiple transportation modes to maximize their profit/customer-satisfaction as per the 

market demand changes. Participant’s individual decision might be optimized approach for their 

own benefits, but induces a risk prone situation of bullwhip effect stimulation. Information 

sharing contributes appreciable role in alleviation of bullwhip effect possibilities. However, 

implementation of an optimized control over inventory flow has always been a lucrative task. 

But, when we refer to a SC scenario, where information sharing is restricted and multiple modes 

of transportation is available between the participants, ensuring optimal control over inventory 

flow becomes more complex. In this regard, fixed order-up-to policy has been studied by many 

researchers under the view of information sharing and lead-time variation influences, but most of 

the discussions are limited to the one transportation mode with variable lead-time considerations 

only. Therefore, it is desirable to frame a policy, which is easily implementable and can facilitate 

optimal control over inventory flow, even considering availability of multiple transportation 

modes. From a theoretical point of view, this research is an effort towards extending fixed order-

up-to policy to harness the effective utilization of multiple transportation modes, and to mitigate 

bullwhip effect. 

Our paper proposes multiple order-up-to policy based inventory replenishment scheme to 

facilitate a centralized control over the SC process to deal with periodic replenishment issues. 

This employs an optimal order-up-to level(s) policy where replenishment decisions at each stage 

of the SC are tracked by allotted order-up-to levels, thereby reducing the need for demand 

information sharing. Our approach considers various transportation facilities between the SC 

participants in the decision making process for replenishment quantities to reduce total SC costs, 

which has been neglected by earlier studies. This paper presents a mathematical model for 

defining optimal multiple order-up-to levels by the SC participants. In order to find an 

appropriate optimal order-up-to level(s), the proposed model aims to maximize total profits, 

satisfy customer demand and minimize total costs (i.e., transportation costs, back order/penalty 

costs). In doing so, the proposed multiple order-up-to levels based policy facilitates a stringent 

control over the SC pipeline inventory, ensures high satisfaction level of customer demand and 

enables timely utilization of available transportation facilities. The paper also demonstrates the 

implementation aspects of the BFA (Bacterial Foraging Algorithm) as a means to determine the 

optimal multiple order-up-to level(s). The replenishment operation and dynamics of the SC are 

validated on several data sets including statistical validation using Percentage Heuristic Gap and 

two-way ANOVA analysis. 

 



 
 

7 
 

2. Proposed multiple order-up-to policy and its mathematical formulation 

 

The multiple order-up-to policy concerns with the replenishment scenario where the stock levels 

are periodically reviewed and an amount of the item is ordered to return stock levels to the 

targeted level (order-up-to level). Traditionally, if the periodically reviewed inventory model is 

not regulated through any order up-to level approach, the average inventory/maximum inventory 

level at the participants does not remain consistent. This is because inventory level varies 

significantly at each review cycle  as the order quantity depends upon inventory replenishment 

policy, historical data, current inventory level and forecasted demand. Therefore, sustainability 

cannot be achieved with optimal cost over a long period. This research investigates the optimal 

multiple order-up-to levels based replenishment policy for multi-stage sustainable supply chain 

over a long period. A replenishment policy is developed by assigning optimal multiple order-up-

to level(s) for each participant of the multi-stage supply chain. In this paper, a single product 

multi-echelon serial supply chain is taken into consideration, which consists of a retailer, 

wholesaler, distributor and manufacturer. The considered supply chain with various flows is 

depicted in Figure 1. Each member manages their inventory level by placing an optimal order on 

their upstream member. Under the optimal order-up-to policy, replenishment orders are placed by 

each member of the supply chain to minimise the overall expected costs(i.e. sum of the 

replenishment, holding, and backorder costs) of the supply chain. 

The proposed scheme is similar to the fixed order-up-to policy approach where replenishment 

decision “how much to order” are made periodically on the basis of a fixed order-up-to inventory 

level. Since, the proposed scheme deals with the problem scenario very close to the realistic 

supply chain scenarios where the multiple transportation modes are used for replenishments. The 

replenishment scheme is designed as such the complex periodic decision related to the 

transportation mode and the order quantities can be decided using multiple order-up-to levels.  

For a simple problem scenario comprising constant consumption rate, the multiple order-up-to 

scheme (having two order-up-to levels: one order-up-to level to decide order quantity using fast 

transportation, other to decide order quantity using slow transportation) is graphically represented 

comparing with traditional fixed order-up-to level model, a graphical illustration is shown in 

figure 2. It can be observed that multiple order-up-to policy reduces the gap between maximum 

inventory and minimum inventory levels consequently provide possibility to reduce average 

inventory level and to increase demand fulfilment (see Fig 2).  

 

<Insert Figure 1 here> 
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<Insert Figure 2 here> 

 

Suppose n types of transportation facilities replenish the demand of kth stage member of multi-

stage supply chain. The replenishment lead time of these transportation facilities are L1,k, L2,k, .….. 

Ln,k, respectively. All members place their order periodically at the beginning of the period. At 

time period t, the member ‘k’ places an order of size Y1,k,t , Y2,k,t , Y3,k,t,….. Yn,k,t by using available 

‘n’ transportation modes respectively. These order sizes depend upon multiple order-up-to levels 

(Finv1,k, Finv2,k, ... Finvn,k)and current inventory level.  

 

Each SC participants have multiple order-up-to levels. Number of order-up-to levels is decided 

based on number of transportation mode available for demand replenishment. If between the two 

SC participants ‘n’ transportation modes are available then ‘n’ order-up-to levels will be assigned 

for order making. For each transportation modes, there is an optimal order-up-to level to decide 

the replenishment quantity.  

There are certain assumptions that are presumed before formulation and investigation of this 

replenishment policy.  

• Within the available transportation modes, priorities to use the transportation modes are 

well decided before finding optimal order-up-to levels. The inventory replenishment 

using faster transportation modes are prioritised over the slower modes. 

• Retailer is considered as the lowest level member in SC, whose membership number is 1. 

Other members have higher membership according to their position in SC. 

• Lead time of the transportation modes do not vary and these times are represented as 

integer numbers. 

• Unfulfilled orders are not considered for further fulfilment. Cost incurred due to order 

unfulfillment is also called ‘back order cost’. 

• Replenishment scheme provides a centralized approach to determine an optimal order-up-

to levels for all the SC members, thus the ordering cost can be reduced significantly or 

can be considered zero. 

• Always, manufacturer (highest level SC member) has sufficient inventory to fulfil all the 

demand. 

• At any time period t, customer demand is uniformly distributed over the time period. 

• Any SC participant replenishes the inventories only from immediate higher level 

participant. 



 
 

9 
 

• The incidents like order placing, order release, shipment arrival, and back order 

calculation follow a certain sequence/time as shown in the Figure 3. At time period t, 

start and end times are mainly used for these incidents, thus these times are distinguished 

with specific names such as Period-beginning Span and Period-closing Span 

respectively. 

 

<Insert Figure 3 here> 

Figure 3 illustrates the sequence of the incidents (order placing, order release, shipment goods 

arrival, back order calculation) which occurs at kth stage during time period t. For implementing 

this policy, kth stage member follows the shown incidents in sequence. First three incidents occur 

in Period-beginning Span and last three incidents occur in Period-closing Span. 

kth stage member follows the incidents given below in sequence. 

//At any time period t// 

Incident1: The shipment goods which are scheduled to reach kth stage member at time period t 

(𝑨𝒀𝟏,𝒌,𝒕/𝑨𝒀𝟐,𝒌,𝒕/… /𝑨𝒀𝐧,𝒌,𝒕), arrive at the start of the period. 

Incident2:Initial inventory level (Iinvk,t) at time period t is counted after the arrival of shipment 

goods. 

Incident3: Orders (𝑹𝒀𝟏,𝒌,𝒕/𝑹𝒀𝟐,𝒌,𝒕/… /𝑹𝒀𝐧,𝒌,𝒕) are dispatched for (k-1)th stage member.  

Incident4: New orders (Y1,k,t / Y2,k,t/.../ Yn,k,t) are placed to (k+1)th stage member.  

Incident5: Final inventory level (𝑳𝒊𝒏𝒗𝒌,𝒕) is estimated. 

Incident6: Estimation of total unfulfilled orders (Binvk,t). 

//Increase the period number by 1, and again iterated from Incident1// 

 

The mathematical model to determine optimal multiple order-up-to levels for each member of the 

supply chain is described below:  

The list of notations used in the mathematical formulation of the problem is described as follows:  
 
 
Li,k Replenishment lead time of ith  type transportation facility between stage k+1 

to k, where i=1,2,3...n 
HC Per unit holding cost 
BC Per unit back order cost  
TCi Per unit transportation cost using ith  transportation facility  
SP Per unit selling cost of the product  
Fcdt Consumer demand fulfilled by the retailer at time period t 
Linvk,t Inventory level of kth stage at the end of time period t (shipment goods are not 

added) 
Iinvk,t Inventory level of stage k at the starting of time period t (after arrival of 
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shipment goods) 
Dk,t 
D1,t 

Demand realized by kth stage participant during time period t 
Customer demand at time period t (Demand realized by the retailer) 

Finvi,k Fixed order-up-to inventory level of stage k that is used to decide order 
quantity using ith transportation (if the stage k has ‘n’ types of transportation 
facilities then ‘n’ order-up-to levels will be decided) 

Yi,k,t Order made by kth stage member at time period t using ith  type transportation 
(order is made at the end of the time period) 

RYi,k,t Inventory released by kth stage member to (k-1)th stage member at the 
beginning of period t using ith  transportation facility 

Binvk,t Back order inventory of the stage k at time period t 
𝐶𝑖𝑛𝑣!,! Total inventory transported from the kth stage member to(k-1)th stage member 

at time period t by all transportation facilities 
AYi,k,t Stage k received the inventory using ith transportation at the end of time 

period t 
 

 

The model presents a periodic replenishment policy wherein the order is placed at the beginning 

of the period. At any time period t, quantity of product replenished utilizing the available (n type 

of transportation) transportation is determined using Eqns. 1-3. The Eq. 1 represents the order 

size placed by kth stage of the SC in time period t for 1st transportation option. The replenishment 

quantity for ith transportation type at kth stage and tth time period is the difference between fixed 

order-up-to inventory levels of stagekusing1st transportation option (𝐹𝑖𝑛𝑣!,!) and inventory level 

of kth stage at the end of time period t-1 (𝐿𝑖𝑛𝑣!,!!!). Mathematically,  

𝑌!,!,! = 𝐹𝑖𝑛𝑣!,! − 𝐿𝑖𝑛𝑣!,!!!        (1) 

However, in case of subsequent 𝑖 ∈ (2,3,… . , n) transport options, the replenishment quantity 

(𝑌!,!,!) is estimated by the subtraction of fixed order-up-to level belong to the particular 

transportation mode ( 𝐹𝑖𝑛𝑣!,!) to the sum of 𝐿𝑖𝑛𝑣!,!!! and total inventory ordered using upper 

priority transportation modes. Therefore,  

 

𝑌!,!,! = 𝐹𝑖𝑛𝑣!,! − 𝐿𝑖𝑛𝑣!,!!! + 𝑌!,!,!
𝑌!,!,! = 𝐹𝑖𝑛𝑣!,! − 𝐿𝑖𝑛𝑣!,!!! + 𝑌!,!,! +  𝑌!,!,!
⋯       ⋯       ⋯       ⋯       ⋯       ⋯        ⋯       ⋯       ⋯

𝑌!,!,! = 𝐹𝑖𝑛𝑣!,! − 𝐿𝑖𝑛𝑣!,!!! + 𝑌!,!,! +  𝑌!,!,! +⋯ 𝑌!!!,!,!

    (2) 

The total inventory that is released using all the available transportation modes from the stage k 

toward stage k-1 at time period t is denoted by 𝐶𝑖𝑛𝑣!,!. Mathematically, 

𝐶𝑖𝑛𝑣!,! = 𝑅𝑌!,!,!!
!!!                                    ∀ 𝑘 ∈ 2,3,… ,m  , 𝑡 ∈ 1,2,3,… ,T   (3) 
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The relationship replenished quantities and the demanded quantities at each stage using different 

transportation facilities are given by: 

𝑅𝑌!,!!!,! ≤ 𝑌!,!,!               ∀ 𝑖 ∈ 1,2,3… , n , 𝑘 ∈ 2,3… ,m − 1 , 𝑡 ∈ 1,2,3,… ,T   (4) 

The initial inventory level of kth stage member is determined as: 

𝐼𝑖𝑛𝑣!!!,! = 𝐿𝑖𝑛𝑣!,!!! + 𝛿!,!        (5) 

𝛿!,! = 𝐴𝑌!,!,!               ∀ 𝑖 ∈ 1,2,3,… . , n , 𝑘 ∈ 1,2,3… ,m − 1 , 𝑡 ∈ 1,2,3,… ,T!
!!!  (6) 

The demand realised by k+1 stage member can be evaluated by: 

𝐷!!!,! = 𝑌!,!,!!
!!!              ∀ 𝑖 ∈ 1,2,3… , n , 𝑘 ∈ 2,3… ,m − 1 , 𝑡 ∈ 1,2,3,… ,T             (7) 

The back order quantity at the kthstage at time period t can be determined by Eq.(8). 

𝐵𝑖𝑛𝑣!,! =
𝜃!,! 𝑖𝑓 𝜃!,! > 0
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

        (8) 

𝜃!,! = 𝐷!,! − 𝐼𝑖𝑛𝑣!,! ∀ 𝑘 ∈ 1,2,3… ,m , 𝑡 ∈ 1,2,3,… ,T     (9) 

The inventory level of kth stage at the end of period t is determined as: 

𝐿𝑖𝑛𝑣!,! =
𝐼𝑖𝑛𝑣!,! − 𝐷!,! if 𝐼𝑖𝑛𝑣!,! ≥  𝐷!,! 
0                          Otherwise

      (10) 

The quantity of fulfilled customer demand in any period of time t can be defined as follows- 
 

𝐹𝑐𝑑! =
𝐷!,! 𝑖𝑓 (𝐼𝑖𝑛𝑣!,! − 𝐷!,!) > 0
𝐼𝑖𝑛𝑣!,! 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 ∀𝑘 ∈ 1,2,3… ,m , 𝑡 ∈ 1,2,3,… ,T   (11) 

 
Subjected to following constraints: 
 
𝐿!,! < 𝐿!!!,!∀𝑖 ∈ 1,2,3,… . , n − 1 , 𝑘 ∈ 1,2,3,… ,m      (12) 
𝐹𝑖𝑛𝑣!,! ≥ 0                  ∀𝑖 ∈ 1,2,3,… , n , 𝑘 ∈ 1,2,3,… ,m     (13) 
𝑌!,!,! ≥ 0                       ∀𝑖 ∈ 1,2,3,… , n , 𝑘 ∈ 1,2,3,… ,m , 𝑡 ∈ 1,2,3,… ,T   (14) 
𝐿𝑖𝑛𝑣!,! ≥ 0                   ∀ 𝑘 ∈ 1,2,3,… ,m , 𝑡 ∈ 1,2,3,… ,T     (15) 
 
The total sales cost of the product for entire time period T is: 
𝑠𝑎𝑙𝑒𝑠 =  𝑆𝑃 ∙ 𝐹𝑐𝑑!!

!!!         (16) 
 

The total inventory holding cost for m players in SC and in T time periods is determined as: 
𝑡𝑜𝑡𝑎𝑙 ℎ𝑜𝑙𝑑𝑖𝑛𝑔 𝑐𝑜𝑠𝑡 =  𝐻𝐶 ∙ 𝐿𝑖𝑛𝑣!,!!!!

!!!
!
!!!      (17) 

 
The back order costs for m players in SC and in T time periods can be determined as: 
 
𝑡𝑜𝑡𝑎𝑙 𝑏𝑎𝑐𝑘 𝑜𝑟𝑑𝑒𝑟 𝑐𝑜𝑠𝑡 =  𝐵𝐶 ∙ 𝐵𝑖𝑛𝑣!,!!!!

!!!
!
!!!      (18) 

 
Finally, the transportation costs for m players in SC, in T time periods, and n transportation 

facilities can be determined as: 

𝑡𝑜𝑡𝑎𝑙 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑠𝑡𝑠 =  𝑇𝐶! ∙ 𝑌!,!,!!
!!!

!!!
!!!

!
!!!     (19) 

Total accumulated profit for entire SC of m players, after running it for ‘T’ periods/weeks is: 
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𝑇𝑜𝑡𝑎𝑙 𝑃𝑟𝑜𝑓𝑖𝑡 = (𝑠𝑎𝑙𝑒𝑠 − 𝑡𝑜𝑡𝑎𝑙 ℎ𝑜𝑙𝑑𝑖𝑛𝑔 𝑐𝑜𝑠𝑡 − 𝑡𝑜𝑡𝑎𝑙 𝑏𝑎𝑐𝑘 𝑜𝑟𝑑𝑒𝑟 𝑐𝑜𝑠𝑡
− 𝑡𝑜𝑡𝑎𝑙 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑠𝑡) 

𝑇𝑜𝑡𝑎𝑙 𝑃𝑟𝑜𝑓𝑖𝑡 = 𝑆𝑃 ∙ 𝐹𝑐𝑑!

!

!!!

− 𝐻𝐶 ∙ 𝐿𝑖𝑛𝑣!,! −
!!!

!!!

𝐵𝐶 ∙ 𝐵𝑖𝑛𝑣!,!

!!!

!!!

− 𝑇𝐶! ∙ 𝑌!,!,!
!

!!!

!!!

!!!

!

!!!

!

!!!

!

!!!

 

           (20) 
            
     
Therefore, the optimal order-up-to levels are determined by maximizing the total acquired profit 

of the SC for number of periods. In this article, the Bacterial Foraging Algorithm is used to 

determine the optimal multiple order-up-to levels for maximizing profit over a long period. 

 

In a situation where supply chain entities do not share the type and status of their inventory 

system with other entities, this creates the bullwhip effect and difficulty in the control and 

forecasting of inventories. To overcome these difficulties, aforementioned mathematical model 

has been developed and its advantages can be demonstrated over the four causes of bullwhip 

effect: demand signal processing, rationing game, price variation and order batching.  

 

Demand signal processing: Improper demand signal processing is known as one of the major 

causes of bullwhip effect. In order to reduce the effect, most literature recommends a continuous 

information sharing based model and effective utilization of forecasting techniques (Nienhaus et 

al, 2006). However, under the assumed scenario of the SC where the information sharing between 

the members are not available, the SC participants usually rely on forecasting methods. There are 

several forecasting techniques (moving average, exponential soothing forecasting etc.) to realize 

customer demand trends. However, existing forecasting methods are unable to successfully trace 

on- time demand variation. 

 

Thus, the information transferred in the form of an order tends to be distorted and can misguide 

upstream members in their inventory and production decisions. Sometimes this distorted 

information can cause amplification in the SC pipeline inventory level. However, the proposed 

policy employs a centrally governed (governed by manufacturer) replenishment scheme, where 

all participants work as a team and utilizes an optimal order-up-to level policy. In order to 

establish a controlled flow, the policy assigns an optimum desired inventory level for every 

participant to maintain stringent control. It provides guidance for ordering the product at each 
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stage of the supply chain and ensures the coherency of material flow patterns among different 

stages.  

 

Rationing and storage gaming: The effect of rationing game generally takes place in a situation 

when the product demand exceeds supply. To deal with the shortage, the manufacturer follows a 

rationing scheme and distributes the limited production in proportion to the orders of the 

downstream members. Downstream entities respond to this by increasing their demand, which 

leads the distortions in the supply chain. The situation is exacerbated when consumers adopt 

hoarding behaviour in response to actual or perceived scarcity. In conditions of scarcity, some 

consumers exaggerate their orders to ensure finding sufficient quantities of product. Owing to this 

high fluctuation of demand from consumers, it becomes difficult to trace the actual demand. The 

model presented in this paper addresses these problems. The order created by the member is 

decided on the basis of remained inventory in stock and an assigned optimal order-up-to level of 

inventory. Across the SC, ordering decisions are taken in accordance with a network-wide policy, 

instead of in reaction to oncoming demands. Thereby, it reduces the effect of customer demand 

fluctuation over the whole SC. 

 

Price variation: Customer demand increases when the product is available at low prices. Having 

a special promotion scheme for the product such as price discounts, coupons, quantity discount, 

and rebates prompts customers to buy the product in large quantities that creates high fluctuation 

in demand levels. Ideally, participants are usually ready to meet increased demand before any 

special promotion scheme. However, the proposed model encompasses a time variable to assign a 

new order-up-to levels to cope up the expected demand due to a promotion scheme. 

 

Order batching: Order batching refers to a situation where demand is created in a large amount at 

one period followed by a period of low demand. If a supplier serves several customers, there is a 

possibility that many customers would create demand in the same period. In this situation 

supplier faces a highly erratic stream of orders which leads to demand spike in the same period 

followed by diminished demand for a subsequent period. The main advantages of the proposed 

continuous replenishment program are: it helps to minimize the inventory in supply line; it 

reduces the possibility of rationing storage gaming; and finally, it reduces the intensity of storage 

variation at the intermediate stages. Further, the proposed approach also helps to reduce the order 

batching effect by small sized shipments using appropriate transportation modes. 
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3. Bacterial Foraging Algorithm (BFA)  

	

Determination of optimal multiple order-up-to levels is computationally complex optimization 

(NP-hard) problem. Complexity of the problem increases exponentially as the number of supply 

chain members or the number of transportation modes increases. Applications of deterministic 

methods become impractical in such computationally complex problems. In last decade, meta-

heuristic approaches have emerged to be a powerful method to solve the NP hard problem in near 

real time (Tiwari et. al. 2006). In our article a meta-heuristic algorithm, the BFA, is employed to 

obtain optimal multiple order-up-to levels for each SC participant in multi-stage supply chain 

network.  

 

BFA is inspired by social foraging behaviour of E-colibacterium (Passino 2002). In foraging 

theory, a bacterium searches for nutrients to maximize the energy intake per unit of time. Each 

bacterium has an underlying sensing ability which allows a bacterium to signal others in the 

group, and this facilitates an efficient swarming tendency towards the rich nutrient hub. During 

the search process the bacterium population performs several activities, which include 

chemotactic, swarming, reproduction, elimination and dispersion actions, as discussed below.   

 

Chemotactic step: In this step swimming and tumbling action is performed. Swimming action 

facilitates the search process by exploring the new area, whereas tumbling actions help to reach 

the optimal solution in the immediate vicinity or neighbourhood. Suppose Φ! 𝑎, 𝑏, 𝑐  represents 

the ith bacterium at ath chemotactic, bth reproductive and cth elimination-dispersal step. The size of 

step taken in any random direction is taken to be 𝐶(i). The movement of the bacterium is 

modelled as: 

Φ! 𝑎 + 1, 𝑏, 𝑐 = Φ! 𝑎, 𝑏, 𝑐 + 𝐶 i
Δ i

Δ! i Δ i
                                     (21) 

where,Δ(i) is the random direction vector with its elements in [-1,1]. 

The number of chemotactic steps is represented as Nc and number of number of swimming steps 

is represented as Ns . 

 

Swarming step: In swarming step, a subgroup of bacteria can aggregate themselves into groups 

and move as a concentric pattern of swarms. During these steps, the cell-to-cell signalling ability 

(attraction and repulsion characteristics) of bacteria helps them to search for a better nutrient 
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place in less time. This group behaviour gives rise to the cell-to-cell signalling (𝜔!!(. )), which is 

represented as: 

𝜔!! Φ, P a, b, c = 𝜔!! Φ,Φ! a, b, c
!

!!!

 

= −𝑑!""#!$" ∙ 𝑒
!!!""#!$" !!!!!!

!!
!!!!

!!! + −𝑑!"#"$$%&' ∙ 𝑒
!!!"#"$$%&' !!!!!!

!!
!!!!

!!!  

           (22) 

where, S is the total number of bacterium, 𝜔!! Φ, P a, b, c  is the value to be added to the actual 

objective function𝜔(Φ),𝑑!""#!$", 𝑑!"#"$$%&', 𝑣!""#!$", 𝑣!"#"$$%&' are some of the coefficients that 

are defined by the user, and p is the number of variables to be optimised. Thus,  

Φ = Φ! Φ! …Φ! !        (23) 

 

The maximisation of objective function, i.e., total profit (Eqn. 20), is represented as 𝜔(Φ) at 

position Φ. Thus  𝜔(i, 𝑎, 𝑏, 𝑐)denotes the health of ith  bacterium at location Φ
!
𝑎, 𝑏, 𝑐 . 

 

Reproduction step: the reproduction process is the process of generation of new bacteria and 

elimination of old ones. The bacteria involved in the reproduction process have better nutrient 

accumulation. Moreover, some least accumulated bacteria disappear and the newly reproduced 

bacteria occupy empty positions. The number of reproduction steps is represented as	Nre.	
 

Elimination and dispersal step: This step takes place after the completion of reproduction step. 

Some bacteria get eliminated and a new, randomly located bacterium gets the position in the 

population. These eliminations of bacteria occur on the basis of a defined probability. From the 

optimization point of view, if an elimination of a bacterium takes place, it simply disperses one to 

a random location in the search space. In the algorithm, Ned  represents the number of elimination 

and dispersal steps and ped  represents the elimination and dispersal probability. 
The pseudo-code bacterial foraging algorithm is given below.  

Pseudo-code 
Parameter initialization  
Initialization of bacterium population 
Compute𝜔 Φi ∀i 
for(c= 1 toNed) 
for(b= 1 toNre) 
for(a= 1 to Nc) 
  

for (i=1 to S) 



 
 

16 
 

//Take a chemotactic step for ith bacterium: 
Compute  

𝜔 i, 𝑎, 𝑏, 𝑐 =  𝜔 i, 𝑎, 𝑏, 𝑐 + 𝜔!!(Φ
!
𝑎, 𝑏, 𝑐 ,𝑃 𝑎, 𝑏, 𝑐 ) 

// fitness function for ith bacterium using Eqn. 20 
//Tumbling Step 
Generate a random direction vector Δ(𝑖) 
//Moving Step 
Compute move operation using Eqn. 21 
Compute𝜔 i, 𝑎 + 1, 𝑏, 𝑐  as 

𝜔 i, 𝑎, 𝑏, 𝑐 = 𝜔 i, 𝑎, 𝑏, 𝑐 + 𝜔𝑐𝑐 Φ
i
(𝑎 + 1, 𝑏, 𝑐 ,𝑃(𝑎+ 1,𝑏, 𝑐)) 

//Swimming Step 
  Let z= 1 

while (𝑧 < 𝑁!) 
do  

. 
If(𝜔 i, 𝑎 + 1, 𝑏, 𝑐 > 𝜔𝑙𝑎𝑠𝑡) 
𝜔𝑙𝑎𝑠𝑡 = 𝜔 i, 𝑎 + 1, 𝑏, 𝑐  and 

Φ
!
𝑎 + 1, 𝑏, 𝑐 =Φ

!
𝑎, 𝑏, 𝑐 + 𝐶 i

Δ i

Δ
!
i Δ i

 

//use Φ
!
𝑎 + 1, 𝑏, 𝑐 to compute the newω i, 𝑎 + 1, 𝑏, 𝑐  

z=z+1; 
else 
z=Ns 

end-do 
//goto next bacterium processing (i+1) 

end// all bacterium are processed 
//goto next chemotactic step (a+1) 

end// end of chemotactic step 
//perform reproduction step 
Evaluate the value of𝜔ℎ𝑒𝑎𝑙𝑡ℎi = 𝜔(i,𝑎,𝑏, 𝑐)𝑁𝑐+1

𝑎=1  
Half of the bacteria with smallest 𝜔ℎ𝑒𝑎𝑙𝑡ℎi die and another halfbacteria with the best values 
split and reproduced bacterium occupy the place of dead bacterium.  

//goto the next Reproduction step (b+1) 
end// end of reproduction step 
//elimination and dispersal loop 

for(i=1 to S) 
 Randomly generate probability 
 if (generated probability <ped) 
 Eliminate the bacterium 
 Generate a bacterium at a random location 
 end 

end// end of elimination and dispersal loop 
//goto the next elimination and dispersal step (c+1) 
end// end of elimination and dispersal step 
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4. Implementation of BFA 

An example of multi-stage supply chain has been numerically simulated to demonstrate the 

execution process of BFA. In this example, each supply chain member has two transportation 

facilities. Due to having two transportation opportunities, it is required to assign two optimal 

order-up-to levels for the participants. 

Model information used to numerically simulate and obtain optimal order-up-to levels 
were: 
 
• Input variables:<Finv1,1, Finv1,2, Finv1,3, Finv2,1, Finv2,2, Finv2,3> (each SC participant 

has two transportation modes for replenishing the inventory; it is the same supply chain 
network as shown in figure1; n=2, m=4)  

• Objective: profit maximization (see Eq.20) 

• Range of Input variables: 
0 ≤ 𝐹𝑖𝑛𝑣!,! ≤ 50; 0 ≤ 𝐹𝑖𝑛𝑣!,! ≤ 50; 0 ≤ 𝐹𝑖𝑛𝑣!,! ≤ 50; 0 ≤ 𝐹𝑖𝑛𝑣!,! ≤ 50; 0 ≤
𝐹𝑖𝑛𝑣!,! ≤ 50; 0 ≤ 𝐹𝑖𝑛𝑣!,! ≤ 50 
• Associated costs: selling price of the product= $3.0 per unit; back order cost = $1.50 

per unit; holding cost = $0.25 per unit per period 
• Number of periods: T=100 periods 

• Initial inventory levels at 1st period:Linv1,0=15 unit; Linv2,0=15 unit; Linv3,0=15 unit; 
AY1,1,1=15 unit; AY2,1,1=0 unit; AY1,2,1=15 unit; AY2,2,1=0 unit; AY1,3,1=15 unit; 
AY2,3,1=0unit. Thus (retailer) Iinv1,1=30 unit, (warehouse) Iinv2,1=30 unit, (distributor) 
Iinv3,1=30 unit 

• Consumer demands of past 100 periods: as shown in Table 4 

 

To determine the optimal order-up-to levels for each participant (retailers, warehouses, and 

distributors) the bacterium can be represented as <13, 14, 19, 20, 25, 32>. In this string, the first 

three numbers represent the first order-up-to level and last three numbers identify the second 

order-up-to level of retailer, warehouse, and distributor respectively. For each member, 

replenishment amount equal to the difference between the first order-up-to level and current 

inventory is ordered from their immediate upstream member using the fastest available 

transportation facility. A further quantity of replenishment is ordered on the basis of the second 

order-up-to level, current inventory and received inventory using the slower transportation mode. 

Suppose, at the end of period ‘t-1’ each of the retailer, warehouse and distributor has remained 

inventory 2, 4 and 1 units respectively and their optimal order-up-to levels are <13, 14, 19, 20, 

25, 32>. According to the policy, in period t, retailer orders a replenishment of 11 (13-2) units by 

using fast transportation and 7 (20-13) units by using the slower transportation facility. Similarly, 

the warehouse and distributor replenish, respectively, 10 and 11 units and 18 and 13 units by 

utilizing the first and second transportation modes. Further, different sets of order-up-to levels are 

searched by performing simulation for a number of periods utilizing historical customer demand 
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data. For maximization of total accumulated profit of the SC, the algorithm serves to determine 

the optimal order-up-to level/levels for each participant. The complexity in the search process 

arises in the first instance because of the wide range of order-up-to levels (integer values [0, 50]). 

The problem becomes more complex when there is a need to determine order-up-to levels for a 

long period of time. 

To solve such complex optimization problem, BFA is proposed to find the optimal order-up-to 

level(s) to achieve maximum profit. BFA is relatively new nature inspired optimization 

algorithm, a promising method for distributed non-gradient search.BFA is known to be robust 

with respect to the size and non-linearity of the optimisation problem. It also has benefits in terms 

of less computational burden, global convergence and less computational time requirement. The 

problem illustrated here maximizes the total profitability of the replenishment scheme where the 

variation in multiple order-up-to levels directly influence the sort-term objectives (customer 

satisfaction & stringent control over pipe-line inventory in the supply chain) as well as the long 

term (100 periods) overall profitability of the supply chain. In the mathematical model, short-term 

objectives, long-term goal and bullwhip effects are mutually influenced by each other. It is 

imperative that the BFA  searches the solution space with a slow bacterial move. The swarming 

ability of the bacterium via attractant and repellent signals simultaneously works for higher 

proximity towards global optimum, by avoiding the possibility of entrapment into the local 

optima.  

The following configuration is used to run the BFA algorithm:  

Bacterium string Φ =<Finv1,1, Finv1,2, Finv1,3, Finv2,1, Finv2,2, Finv2,3>;  

Bacterium nutrient concentration(𝜔 Φ )= Total profit over the 100 period of time (objective 

function as in Eq.20); 

Bacterium population (S)=	 20;	 number of chemotectic iteration(Nc)=50; number of swarming 

iteration (Ns)=4; number of reproduction iterations Nre=4; number of elimination and dispersion 

iteration (Ned) depends upon global convergence characteristics; Ped=0.46, C(i)= 2.1, dattract=0.9, 

drepellant=0.9, vattract= 1.2, vrepellant=1.2. 

 

To demonstrate the effectiveness of the proposed algorithm, it is compared against the Genetic 

Algorithm (GA). The performance (searching of best fitness value) of both algorithms has been 

plotted against total number of fitness evaluation (Figure 4).Before the optimization, both 

algorithm's (GA and BFA) parameters were tuned with proper care and experimental iteration 

support. In all three problem scenarios, BFA acquired fitness value (Total profit) moves faster 

toward the optimum (maximum) point than the GA acquired fitness value. BFA finds the best 
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solution in less number of iterations. Moreover, the final best solutions obtained by BFA for all 

three problem scenarios are superior than the GA obtained solutions. Optimization experiments 

were performed many times to evaluate the performances of BFA and GA, results were quite 

similar as shown in the Figure 4. It is clear that BFA algorithm outperforms GA algorithm.  

<Insert Figure 4 here> 

5. Results and discussion 

In this section, we summarize the numerical investigations performed to validate the effectiveness 

of the proposed method. A single product, practical supply chain problem is considered, where 

the manufacturer has information on past consumer demand data in form of its mean and 

variance. The manufacturer uses a policy-based replenishment program to maintain a continuous 

flow of product across the supply chain. There are two types of transportation facilities that the 

participants can utilize. In order to carry out the experiments, several stochastic customer demand 

sets (randomly, normal distribution with mean=30 and variance=5) have been generated and 

utilized to simulate three types of transportation scenarios.  

Scenario 1: The SC participants utilize slow transportation for their replenishment programs 

Scenario 2: The SC participants utilize fast transportation for their replenishment programs 

Scenario 3: Both transportation opportunities are utilized for the replenishment programs 

The analysis of these three scenarios aims to select the cost-effective transportation method. To 

perform the simulations, the algorithm has been coded in C++ and was run on an Intel i5 CPU at 

2.13 GHz. For all experiments, the applied costs are as follows: per unit selling price of the 

product= $3.0; back order cost = $1.50 per piece of product (this cost is assumed as a penalty cost 

when demand is unsatisfied); finally, holding cost = $0.25 per unit per period, (it can be assumed 

as a penalty cost for extra inventory that remains at the end of the period). The replenishment 

lead-time of the transportation modes are one and two periods, for fast and slow transportation 

respectively. Similarly, per unit transportation costs are $0.4 and $0.2, respectively. 

Aforementioned problem parameters are generated by following the general guidelines available 

in the literature and combining them in the preliminary experiments.  

First two problem scenarios (where only one transportation modes are available) are similar to the 

fixed order-up-to policy based replenishment having no variation in lead time (Chen et al., 

2000a). Simchi-levi et al. (2008) discussed several two stage SC problems dealing with various 

distribution of customer demand.  Similar problem scenarios, having single transportation mode 

is also investigated by O’Donnell et al. (2006). Making comparison between first and second 
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scenario results gives insight that only changing the mode of transportation does not bring 

significant improvement in profit outcomes (refer the results shown in Table 2 and Table 3). 

Third problem scenario has been introduced to represent the use/effectiveness of multiple mode 

transportation over the one mode transportation use. The profit outcome by use of multiple 

transportation modes increases significantly, have been justified by all the conducted 

experiments, results are shown in Table 4. It is worth to notice that the incurred costs are kept 

same in all the problem scenarios. As well as, it is ensured that in each experiment, customer 

demand is generated for 100 periods following the normal distribution pattern, and the same 

customer demand (100 periods) is deployed for all three problem scenarios one-by-one. So that, 

the result outcomes from the scenarios can be evaluated at common platform of incurred costs & 

customer demand, and valuable inferences can be drawn. Moreover, the benefits and the 

limitations of multiple transportation modes replenishment over the single transportation 

replenishment can be evaluated comparing with scenario 1 and scenario 2 results in each single 

experiment separately. 

Scenario 1: The SC participants utilize slow transportation for their replenishment programs 

For the slow transportation scenario, the test is performed twenty times for different randomly 

generated customer demands. For the experiments it is assumed that both the lead time and 

transportation cost are same for all participants. In each experiment, optimal order-up-to levels 

are determined to maximize the profit by running the SC for 100 periods. The experiments 

simulate the replenishment program, where the participant utilizes slow transportation and 

continuously raises their demand at the start of the period. The results and performance have been 

tabulated (Table 1) in the form of acquired profits and associated optimal order-up-to level for 

participants (Retailer, Warehouse and Distributor).  

 

<Insert Table 1 here> 

 

Scenario 2: The SC participants utilize fast transportation option for their replenishment 
programs 
 

Similar to the above scenario, experiments have been further performed where participants use 

fast transportation option. In this scenario, transportation takes less time (one period) to replenish 

the product. However, the transportation cost is double in comparison to the slow one. The 

experiments present the combined effect of the diminution of lead time and the increment of 
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transportation cost over the performance of long run (100 periods) supply chain and acquired 

profit. The results of experiments are shown in Table 2. By comparing the results of scenario 1 

and scenario 2, we can conclude that the utilization of fast transportation is more effective than 

the slow transportation to increase overall profit.  

<Insert Table 2 here> 

Scenario 3: Both transportation opportunities are utilized for the replenishment programs  
 

In this case, the experiments test supply chain responsiveness, when both available transportation 

methods are used to facilitate the continuous flow of product. Similar to the above scenarios, all 

sets of generated customer demand data are tested. The results (Table 3) show that the acquired 

profit in this case has been significantly increased. The outcome of the experiments represents 

dominance of the transportation scenario where both transportation methods are utilized. The 

partial use of both transportations plays a significant role in minimizing the transportation cost as 

well as in enhancing the continuity of replenishment. Suppose the result of an experiment for 

which the obtained optimal order-up-to levels are <10, 10, 14, 43, 31, 41>. In this case, optimal 

order-up-to levels 10, 10 and 14 provide a limit of inventory for retailer, warehouse and 

distributor respectively and the fast transportation facility should be utilized. Further, the 

remaining quantity to reach the second inventory level of 43, 31 and 41 for the same participants 

respectively, are to be satisfied by the slow transportation method. The optimal order-up-to levels 

for various customer demand data sets are obtained and investigated to check the robustness and 

effectiveness of the proposed policy. The results obtained for these experiments are presented in 

Table 3. By analysing these results, we find that optimal order-up-to levels searched by the BFA 

algorithm for all sets of customer demand are very close to each other. A probability based 

selection criterion is used to determine order-up-to levels (see Table 3). According to this 

selection criterion, we choose the entity which has highest probability to occur frequently 

(O’Donnell et al. 2006). The probability of the result <10, 10, 14, 43, 31, 41> for being the best 

choice is quite high. Therefore, optimal order-up-to level <10, 10, 14, 43, 31, 41> has been 

applied over the aforementioned supply chain, where levels 10 and 43 apply to the retailer, levels 

10,31 apply to the warehouse and levels 14,41 apply to the distributor. The participants will be 

bounded to create orders and utilization of transportation in accordance with the assigned order-

up-to levels. Supply chain performance has been observed by employing the policy for the 100 

periods. From the 100 periods run, some period-wise observation of inventory transactions at the 

retailer, warehouse, distributor and manufacture stages have been shown in Table 4. Moreover, 

the responses of supply chain in form of inventory level and customer satisfaction are given by 
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the graphical representation in Figure 5 and Figure 6. Optimal order-up-to levels assign a limit for 

every participant of the supply chain, and participants attempt to achieve this inventory level in 

each period by creating an order. Thus, the product flow across the supply chain is mainly 

controlled by the allotted optimal order-up-to levels rather than the forecasted customer demand. 

The optimal order-up-to level not only limits the ordering quantity at each stage of supply chain 

but also eliminates the possibility of bullwhip effect by avoiding the direct dependency of order 

quantity variation with demand fluctuation. If the policy reduces the amplification of ordering 

quantity, the main challenge is to fulfil the customer demand while maintaining proper inventory 

level at the different stage. Thus, we have investigated the period-wise performance of an optimal 

order-up-to level policy in respect of demand satisfaction and inventory level of the different 

stages. The curve of retailer inventory rarely lies below the customer demand curve (Figure 5). 

This indicates that back ordering at the retailer stage rarely occurs and that the retailer provides a 

high degree of customer demand satisfaction (Figure 6). Therefore, we can conclude that the 

presented optimal order-up-to level policy not only reduces the bullwhip effect by controlling the 

proper flow of product throughout the supply chain but also facilitates a high degree of customer 

satisfaction.  

<Insert Tables 3and 4 here> 

<Insert Figure 5 and 6 here> 

 
To show the robustness of the proposed approach, the BFA algorithm is also tested on large data 

sets with increased complexity. The larger data set is generated randomly to demonstrate more 

complex supply chain scenarios. The effectiveness of the algorithm is shown by a new parameter 

‘Percentage Heuristic Gap (PHG)’. PHG can be mathematically represented as (Huang et al. 

2002):  

 
( ) 100×=

bound lower Best
bound lower Best-bound upper BestPHG     (24) 

 
The lower bound is the objective function value obtained by relaxing some of the bounds or 

constraints pertaining to the problem environment. The upper bound is the value of objective 

function of any solution that satisfies all the constraints. In the present study, lower bound is 

calculated by relaxing the penalty cost. According to PHG, if the value is very small the near 

optimal solution of the problem is guaranteed.  
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Table 5 shows the parameters values of the randomly generated data sets. The calculated PHG 

value for various sized data sets is given in Table 6-8. 

 

<Insert Tables 5 - 10 here> 

 

To assess the significance of PHG results, a two-way ANOVA without replication was 

performed. Test was conducted at 95% confidence level which is highly significant. The results 

of the ANOVA test are provided in the Tables9-10. From the table, it is clear that the value of F is 

greater than critF  and simultaneously the p-value is also less than significance level (α =0.05). 

Therefore, the results statistically validate the robustness of the proposed algorithm.  

 

6. Conclusions 

This paper contributes to the facilitation of a centralised control based supply chain management 

to effectively deal with the replenishment policies. The proposed approach takes into account the 

optimal multiple order-up-to policy to reduce the need for information sharing by tracking 

replenishment decisions at each stage of the SC (using allotted order-up-to levels). Transportation 

modes and associated costs among SC participants are also considered in making effective 

decisions on replenishment quantities with a view to reduce overall SC costs. The proposed 

model maximises total profits along with minimising total SC costs while satisfying customer 

demand. The resulting solution includeded an optimal order-up-to level(s) for the SC participants. 

To solve such optimisation model, we have introduced a new emerging BFA which shows greater 

efficiencies and better solution qualities than its evolutionary algorithm counterpart such as 

Genetic Algorithm (GA). The results of the proposed approach is tested and validated on several 

datasets using Percentage Heuristic Gap and two-way ANOVA analysis.  

This paper demonstrates a policy based continuous replenishment program where the order 

quantity at each stage of the supply chain is determined by using an optimal order-up-to level(s). 

These specifically deal with the SC scenario where the participants are able to acquire local 

information (can share demand information with immediate down-steam and up-steam members) 

but they do not have the facility to share information with each member of the SC. The authors 

have employed the approach over an example of multi-echelon, serial, single product supply 

chains where the each member of a supply chain has several types of transportation options and 

they utilize these to reduce the transportation cost and to replenish goods in a timely manner. The 

research utilizes the BFA approach to determine the optimal order-up-to level(s) and seeks to 

eliminate the bullwhip effect by avoiding the influence of customer demand fluctuation across the 
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SC. Findings show that assigning the optimal order-up-to level approach bounds the order limit, 

and hence eases the effect of demand variation over the whole SC. In addition, optimal order-up-

to approach provides a trade-off between inventory level in supply chain and order fulfilments 

while minimizing the incurred cost. The response of the simulation tests shows that the applied 

approach can reduce the effect of customer demand variations over the inventory level, ordering 

quantities and flow of product, at participating stages of the supply chain. Moreover, it eliminates 

the propagation of distorted customer demand information across the SC. Therefore, this 

approach significantly reduces the bullwhip effect while establishing a proper product flow into 

the supply pipeline. Further, the robustness of the proposed algorithm is tested using Percentage 

Heuristic Gap concept. A two-way ANOVA analysis is also employed to statistically validate the 

consistency of the proposed BFA algorithm. Research can be further extended to apply and obtain 

optimal order-up-to level/levels for on-line model, viz. where the model can be updated after 

certain period, weekly or before launching sale-promotion, changing the price and price discount 

schemes to improve the responsiveness in the inventory system.  
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Figure 2: (a) Graphical representation of the traditional fixed order-up-to level inventory model for a 
simple periodic replenishment scenario where the consumption rate is constant; (b) Graphical 
representation of the multiple order-up-to policy (two order-up-to levels) based inventory model for a 
simple periodic replenishment scenario where the consumption rate is constant two modes of 
transportation available. (consumption rate is equal in both the cases) 

 
 
 

Figure 1: Multi-stage serial Supply Chain Network 
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Figure 3: Representation of incidents occur at kth stage during the time period t (on time 

scale the incidents are shown in sequence) 
 

 

 
 

 

Figure 4: Convergence curve of BFA against GA applied for all of the three types of 
transportation scenarios 
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Table 1: Result of the performed experiments considering slow transportation ( First scenario) 
Experiment Maximum Profit Optimum order-up-to levels 

1 3451 <34, 36, 37> 
2 3190 <32, 33, 37> 
3 3510 <32,31,35> 
4 3444 <32,31,35> 
5 3766 <32,31,35> 
6 3346 <32,31,35> 
7 4392.1 <33,30,32> 
8 3163.5 <32,33,33> 
9 3323 <32,34,35> 

10 3544 <32,34,35> 
11 3490 <33,33,34> 
12 3712 <34,35,36> 
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Figure 6: Response of SC in terms of fulfilled customer demand 

Figure 5: Response of SC in terms of inventory level at the different stages 
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13 3611.9 <34,35,36> 
14 3405.1 <34,35,36> 
15 3492 <34,35,36> 
16 3305 <33,33,34> 
17 3481.2 <33,33,35> 
18 3543.7 <34,35,35> 
19 3420.1 <34,35,35> 
20 3643.0 <34,35,35> 

 
 
Table 2: Result of the performed experiments considering fast transportation (Second scenario) 
Experiment Maximum Profit Optimum order-up-to levels 

1 3360 <34, 36, 37> 
2 3711 <33, 30, 32> 
3 3665 <34, 33, 37> 
4 3551 <34, 31, 37> 
5 3447 <33, 30, 34> 
6 3611 <35, 32, 35> 
7 3348 <33, 31, 35> 
8 3467 <30, 32, 36> 
9 3336 <30, 32, 33> 

10 3515.1 <33, 31, 35> 
11 3460.6 <33, 31, 35> 
12 3400 <30, 32, 36> 
13 3601.9 <33, 31, 35> 
14 3455.1 <32, 31, 34> 
15 3555.2 <32, 31, 34> 
16 3732.8 <34, 33, 37> 
17 3471.8 <34, 31, 37> 
18 3398.2 <33, 32, 34> 
19 3666.1 <32, 33, 34> 
20 3451.2 <34, 36, 37> 

 
 
 

Table 3: Result of the performed experiments considering utilization of both transportation 
(Third scenario) 

Experiment Maximum Profit Optimum order-up-to levels 
1 4361.5 <14, 10, 17, 41, 30, 36> 
2 4515.92 <10,10, 11, 43, 31, 36> 
3 5015.1 <10,10, 11, 43, 31, 36> 
4 4550.6 <10, 10, 13, 43, 31, 37> 
5 4508.96 <12,10,14, 41, 30, 37> 
6 4601.9 <12,10,14, 41, 30, 37> 
7 4455.1 <10,10,11, 33, 29, 35> 
8 4491.92 <10,10,11, 33, 29, 35> 
9 4305.96 <10,10,11, 33, 29, 35> 

10 4732.351 <10, 10, 14, 43, 31,41> 
11 4517.73 <10, 10, 14, 43, 31, 41> 
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12 4747.966 <10, 10, 14, 43, 31, 41> 
13 4795.146 <10, 10, 14, 43, 31, 41> 
14 4591.314 <10, 10, 14, 43, 31, 41> 
15 5190.5 <10, 10, 14, 43, 31, 41> 
16 4539.8 <14, 10, 17, 41, 30, 36> 
17 4471.8 <13, 10, 11, 40, 31, 37> 
18 4553.7 <13, 10, 11, 38, 31, 37> 
19 4470.1 <11, 10, 11, 41, 31, 39> 
20 4603.0 <11, 13, 12, 41, 31,39> 

 
Table 5:Parameter values related to the data sets of problem 

Classification Number of transportation 
facilities 

Number of players 

Very small (VS) 2-3 3-6 
Small (S) 4-5 7-10 
Large (L) 6-7 11-14 

Very large (VL) 8-9 15-18 
 
Table 6:Computational results for very small and small sized data set 

Results for very small sized data set Results for small sized data set 
Number 

transportation 
facilities 

Number of 
Players 

Heuristic 
gap 

Number 
transportation 

facilities 

Number of 
Players 

Heuristic 
gap 

2 3 1.234 4 7 0.987 
2 4 2.114 4 8 1.677 
3 5 1.768 5 9 2.104 
3 6 1.904 5 10 1.346 

 
Table 7: Computational results for large and very large sized data set 

Results for large sized data set Results for very large sized data set 
Number 

transportation 
facilities 

Number of 
Players 

Heuristic 
gap 

Number 
transportation 

facilities 

Number of 
Players 

Heuristic 
gap 

6 11 2.773 8 15 1.056 
6 12 1.855 8 16 2.834 
7 13 2.379 9 17 2.536 
7 14 2.757 9 18 1.916 

 
Table 8: Average heuristic gap for different problem sizes 

 Low High Average 
Very Small  1.674 1.836 1.755 

Small 1.332 1.725 1.528 
Large 2.314 2.568 2.441 

Very Large 1.945 2.226 2.085 
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Table 9: Intermediate values of the two ways ANOVA test without replication 
SUMMARY Count Sum Average Variance 
Row 1 2 3.51 1.755 0.013122 
Row 2 2 3.057 1.5285 0.077224 
Row 3 2 4.882 2.441 0.032258 
Row 4 2 4.171 2.0855 0.03948 
     
Column 1 4 7.265 1.81625 0.173022 
Column 2 4 8.355 2.08875 0.148238 
 
Table 10: Results of ANOVA test 

Source of 
Variation SS df MS F P-value F crit 

Rows 0.950207 3 0.316736 70.00973 0.002825 9.276628 
Columns 0.148513 1 0.148513 32.82649 0.010555 10.12796 

Error 0.013573 3 0.004524    

       

Total 1.112292 7     
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


