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ABSTRACT: A novel poly(N-isopropylacrylamide) (PNIPAM) hydrogel
containing different photosensitizers (protoporphyrin IX (PpIX), pheophorbide
a (Pba), and protoporphyrin IX dimethyl ester (PpIX-DME)) has been
synthesized with a significant improvement in water solubility and potential for
PDT applications compared to the individual photosensitizers (PSs).
Conjugation of PpIX, Pba, and PpIX-DME to the poly(N-isopropylacrylamide)
chain was achieved using the dispersion polymerization method. This study
describes how the use of nanohydrogel structures to deliver a photosensitizer
with low water solubility and high aggregation tendencies in polar solvents
overcomes these limitations. FT-IR spectroscopy, UV−vis spectroscopy, 1H
NMR, fluorescence spectroscopy, SEM, and DLS analysis were used to
characterize the PNIPAM−photosensitizer nanohydrogels. Spectroscopic
studies indicate that the PpIX, Pba, and PpIX-DME photosensitizers are
covalently conjugated to the polymer chains, which prevents aggregation and
thus allows significant singlet oxygen production upon illumination. Likewise, the lower critical solution temperature was raised
to ∼44 °C in the new PNIPAM-PS hydrogels. The PNIPAM hydrogels are biocompatible with >90% cell viability even at high
concentrations of the photosensitizer in vitro. Furthermore, a very sharp onset of light-dependent toxicity for the PpIX-based
nanohydrogel in the nanomolar range and a more modest, but significant, photocytotoxic response for Pba-PNIPAM and PpIX-
DME-PNIPAM nanohydrogels suggest that the new hydrogels have potential for applications in photodynamic therapy.

■ INTRODUCTION
Photodynamic therapy (PDT) relies on the activation of a
photosensitizer (PS) using visible or near-IR light to generate
reactive oxygen species, such as singlet oxygen, as cytotoxic
agents.1,2 Porphyrins feature prominently among the clinically
approved PDT drugs and typical examples of porphyrin-based
drugs include Photofrin (porfimer sodium), Visudyne (verte-
porfin), and Foscan (temoporfin).2,3 A recurring problem is the
intrinsically low water solubility of many porphyrinoid PSs and
their tendency to aggregate in polar solvents and biological
media. Aggregation results in quenching of the excited states,
thus lowering the singlet oxygen yields and impacts the ability
of a PS to reach the target tissue limiting its clinical use. In
order to overcome these limitations and to obviate side effects,
different strategies to improve the pharmacological profile of

PSs have been developed.4 In terms of approved drugs this
mostly involves liposomal formulations (Visudyne), polar
functionalities in the PS (Photofrin), or the use of biosynthetic
precursors (Levulan). This is complemented by a range of
nanomedicinal strategies, incorporation of water-soluble side
chains, or other formulation techniques for second- and third-
generation PSs.5,6

In terms of biocompatibility, the natural protoporphyrin IX
(PpIX) would be a good PDT drug candidate.7 Currently, it is
only used clinically via application of its biosynthetic precursor
5-aminolevulinic acid (Levulan or its methyl ester, Metvixia) as
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a pro-drug. PpIX can be an effective photosensitizer for PDT
application as shown by its effect in ALA-induced PDT.8

However, PpIX “as is” is not suitable for direct intravenous
injection due to its low water solubility and tendency for
aggregation. This aggregation in water is due to π-stacking
interactions and edge-to-edge hydrophobic interactions. In
addition, intermolecular hydrogen bonds between the carbox-
ylic acid groups stabilize porphyrin aggregates.9 Aggregation
poses a problem as it leads to accumulation in skin and
prolonged light sensitivity, undermines the efficiency of singlet
oxygen production, and reduces treatment efficacy.10 Similar
arguments pertain to the use pheophorbide a (Pba), a key test
compound11 for the use of chlorophyll derivatives in
PDT.3,12,13 Again, low water solubility and lack of selectivity
often cause accidental damage to normal cells and long-term
cutaneous photosensitivity.14,15

Clearly, there is a need to provide a simple solution that will
improve the solubility and stability of standard photosensitizers
(such as PpIX, Pba, and related compounds). Most of the
standard strategies4,5 for water solublization and stable
formulations of photosensitizers use encapsulation in colloidal
carriers,16,17 nanoparticles,5,18−20 and micelles21 or drug
formulation additives.22 Yet, few reports deal with stable
formulations of PpIX and Pba for systemic administration,23,24

and these either use complex coupling chemistry or simple
encapsulation which allows possible leakage of the PS.
Recently, hydrogels have attracted attention as a rather

simple and facile means to solubilize and deliver drugs.25

Hydrogels are three-dimensional hydrophilic, polymeric net-
works capable of absorbing large amounts of water or biological
fluids. In the area of PDT a range of different PS−hydrogel
materials have been prepared,26,27 mostly using simple PS dyes,
encapsulation, or copolymerization. The random distribution of
cross-linkers or copolymers in the 3D network of the hydrogel
not only prevents aggregation of the copolymer or cross-linker,
but the highly macroporous networks also enable molecules
and cells to enter and migrate freely throughout the material.
Thus, hydrogels offer significant potential as injectable, water-
soluble carriers for nonaggregated PSs with high singlet oxygen
production.
A PS can be incorporated into a hydrogel either via simple

noncovalent encapsulation or through copolymerization and
covalent linkage. The former has the drawback of the PS
leaking from the hydrogel with associated loss of activity. A
facile approach uses the PS itself as the cross-linker in the
hydrogel, as recently shown with an A4-type porphyrin in a N-
isopropylacrylamide (PNIPAM) hydrogel28 and a BODIPY−
cross-linked chitosan hydrogel.29 These results prompted us to
investigate whether key natural PSs such as protoporphyrin IX
or pheophorbide a can be formulated in such a manner and to
develop a simple means for their use in PDT and translational
drug development. Herein we describe the direct use of
protoporphyrin IX, protoporphyrin IX dimethyl ester (PPIX-
DME), and pheophorbide a as the copolymer in PNIPAM
hydrogels to yield stable, water-soluble nanohydrogels (Figure
1), in which the PSs remain active photosensitizers with
excellent in vitro PDT efficacy.

■ EXPERIMENTAL SECTION
Materials. N-Isopropylacrylamide (NIPAAM, 99%), methylenebis-

(acrylamide) (MBA, 99%), protoporphyrin IX (≥95%), and potassium
persulfate (KPS, 99%) were purchased from Sigma-Aldrich. Poly(N-
vinylpyrrolidone) 25 (PVP, average MW ∼ 292.23 g mol−1) was

purchased from Merck. Deionized and distilled water was used for all
solution preparations. Pheophorbide a30 and PPIX-DME31 were
prepared as previously described.

Synthesis of Protoporphyrin IX−Poly(N-isopropylacryla-
mide) Nanohydrogel (PpIX-PNIPAM). The PpIX-PNIPAM hydro-
gels were synthesized using the in situ dispersion polymerization
method in a mixture of water and dimethylformamide (DMF, as
organic solvent for dissolution of protoporphyrin IX in the reaction
mixture). In a typical procedure, NIPAM (2.65 mmol, 300 mg), N,N-
methylenebis(acrylamide) (MBA) (0.1 mmol, 16 mg), and PVP (300
mg) were dissolved in 6 mL of deionized water, and PpIX (2% w/w, 6
mg, 3% w/w, 9 mg, or 4% w/w, 12 mg) was dissolved in DMF, with
both solutions then mixed in a Schlenk tube under nitrogen gas. The
solution was stirred at 350 rpm and heated to 70 °C for 40 min under
continuous purging with a nitrogen atmosphere. The initiator,
potassium persulfate (0.076 mmol, 200 mg), dissolved in 1.0 mL of
deionized water, was added to the mixture to start polymerization. The
reaction was carried out at 70 °C for 24 h under a N2 atmosphere.
After polymerization, to remove unreacted monomers from the
resultant hydrogels, the products were dialyzed against deionized water
using dialysis bags at room temperature for 2 days.

Figure 1. Schematic illustration of the preparation of (a) poly(N-
isopropylacrylamide)−protoporphyrin IX (PpIX-PNIPAM), (b) poly-
(N-isopropylacrylamide)−pheophorbide a (Pba-PNIPAM), and (c)
poly(N-isopropylacrylamide)−protoporphyrin IX dimethyl ester
(PpIX-DME-PNIPAM) nanohydrogels. (d-1) Protoporphyrin IX as
a dispersion in water and (d-2) PNIPAM-PpIX nanohydrogel showing
complete solubility in aqueous media.
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Synthesis of Protoporphyrin IX Dimethyl Ester−Poly(N-
isopropylacrylamide) Nanohydrogels (PpIX-DME-PNIPAM).
Preparation followed the method used for PpIX-PNIPAM using
protoporphyrin IX dimethyl ester (3% w/w, 9 mg) in 4 mL of DMF.
Synthesis of Pheophorbide a−Poly(N-isopropylacrylamide)

Nanohydrogel (Pba-PNIPAM). Preparation followed the method
used for PpIX-PNIPAM using pheophorbide a (3% w/w, 9 mg) in 4
mL of DMF.
Physical Characterization. 1H NMR spectra were recorded on a

Bruker Advance III 400 MHz, a Bruker DPX400, or an Agilent 400
spectrometer. UV−vis spectra were recorded using a Specord 250
spectrophotometer from Analytic Jena (1 cm path length, quartz cell).
Emission and excitation spectra were measured using a Cary Eclipse
G9800A fluorescence spectrophotometer. Fourier transform infrared
(FT-IR) measurements were performed with a Digilab FTS-6000
spectrometer. Particle size distributions were measured using dynamic
light scattering (DLS; ZetaSizer 3000 HS, Malvern Instruments).
Differential scanning calorimetry (DSC), using a PerkinElmer
Diamond DSC instrument with a scan rate of 1 K min−1, was used
to determine the exact temperature of the LCST point. SEM images
were taken on a Jeol JSM IT-100 instrument. The applied voltage on
the cathode was 2 kV.
Singlet Oxygen Production. Photoirradiation experiments were

performed in quartz cuvettes (2 × 1 × 1 cm) using a polychromatic
light source (Philips, 15 V−150 W lamp), equipped with a 400 nm
cutoff filter (Schott GG 400) and a 532 nm diode pumped solid state
green laser system (CW532-04, average intensity of 10 mW cm−2).
The sample temperature was kept at 18 °C using a Peltier element
(Cary Peltier 1 × 1 cell holder). Relative 1O2 yields (ΦΔ) were
calculated from the slopes of the 1,3-diphenylisobenzofuran (DPBF)
conversion in the presence of different photosensitizers. The decrease
in UV absorbance (417 nm) of DPBF in the presence of PpIX-
PNIPAM, Pba-PNIPAM, and PpIX-DME-PNIPAM hydrogels was
measured in DMSO; 5,10,15,20-tetraphenylporphyrin (TPP) in

DMSO was used as a standard. Equation 1 was used to calculate the
singlet oxygen generation efficiency of the hydrogels.32

η = ΦΔ
t

thydrogel TPP
TPP

hydrogel (1)

In this equation, tTPP is the time for the decrease in absorption of
DPBF in the presence of TPP in DMSO and thydrogel is the time for the
decrease in absorption of DPBF in the presence of the individual
hydrogels. ΦTPP is the singlet oxygen quantum yield of TPP (0.52 ±
0.15).33

Photocytotoxicity Tests. Cell viability was used to investigate the
cytotoxicity of the PpIX-PNIPAM, Pba-PNIPAM, and PpIX-DME-
PNIPAM hydrogels for cancer cells (HT-29, human colon
adenocarcinoma) using the MTT assay.34 In brief, solutions of the
hydrogels in DMSO were further diluted in DMEM medium
(Dulbecco’s Modified Eagle’s Medium with 4.5 g L−1 glucose and 2
mM L-glutamine without FCS) to give a range of concentrations. The
HT-29 cells were adjusted to a concentration of 1 × 106 cells/mL. 800
μL of this cell suspension was added to 200 μL of the dilutions at 5×
the desired concentration and incubated in the dark for an hour at 37
°C and under 5% CO2, after which they were washed in a 3-fold excess
of medium to eliminate any unbound compound. The pellets of cells
and compound were resuspended in 1 mL of medium, and 4 × 100 μL
of each cell (8 × 104) and dye concentration was put into two 96-well
plates. One plate was irradiated with white light (20 J cm−2 provided
by an Oriel quartz tungsten halogen lamp housing model 66188
powered by an Oriel 1100 W radiometric power supply, model 69935)
while the other served as a dark toxicity control. After irradiation, 5 μL
of fetal bovine serum was added to each well, and the plates were
returned to the incubator overnight. After 18−24 h, an MTT cell
viability assay was performed, and the results were expressed as
percent of cell viability versus compound concentration; an LD90

Figure 2. (a) FT-IR spectra of protoporphyrin IX and poly(N-isopropylacrylamide)−protoporphyrin IX hydrogel. (b) 600 MHz 1H NMR spectra of
PpIX-PNIPAM nanohydrogel in D2O at different temperatures. (c) Pictorial illustration of the LCST type phase transition of the PpIX-PNIPAM
nanohydrogel at 40 and 50 °C.
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(dose where 90% of the cells are killed) was determined from the
resulting curves.

■ RESULTS AND DISCUSSION

Preparation and Characterization of PS−Nanohydro-
gels. The PpIX-PNIPAM hydrogel was synthesized using an in
situ dispersion polymerization method which involves mixing
organic (to handle the water-insoluble PS monomers) and
aqueous solvents. The presence of a double bond in the N-
isopropylacrylamide structure as the main monomer and the
two vinyl groups in PpIX as the copolymer is key for the
polymerization. The optimum concentration of PpIX in the
hydrogel structure was established as 4 wt %; higher
concentrations resulted in increased hydrophobicity of the
hydrogel and a decrease in its solubility in aqueous media.
Initial structural characterization of PpIX-PNIPAM hydrogels

involved FT-IR and 1H NMR spectroscopy. The FT-IR spectra
(Figure 2a) exhibit the typical amide I band, as indicated by the
carbonyl stretch of PNIPAM at 1647 cm−1 and the amide II
band shows the N−H vibration at 1550 cm−1. Signals at 1372
and 1365 cm−1 were assigned to the methyl bending vibration
of the symmetric isopropyl groups. In addition, the signal at
3281 cm−1 was attributed to the stretching vibration of the
hydroxyl group of the acid in the hydrogel structure.
The 1H NMR spectra of the hydrogel at different

temperatures are shown in Figure 2b. Typical resonances
attributable to the hydrogen atoms of the PNIPAM unit are
clearly observed in the upfield area and the peaks in the
downfield area are ascribed to the protoporphyrin IX section of
the hydrogel structure. The 1H NMR spectrum at 25 °C
indicates good solubility and mobility of the N-isopropyl-
acrylamide and PpIX units. However, upon heating, all signals
corresponding to PNIPAM shift downfield along with a strong
decrease in intensity. This is the result of restricted molecular
movement due to aggregation of the thermosensitive N-

isopropylacrylamide units during phase transitions in aqueous
environment, which occur around 38−45 °C. The phase
transition temperature (Figure 2c) of the hydrogel was
determined to be around 40 °C, which is in good agreement
with data from differential scanning calorimetry (DSC) and
turbidity testing.
The same procedure was used for the preparation of Pba-

PNIPAM and PpIX-DME-PNIPAM. Here a concentration of
3% photosensitizers was used as an optimum concentration for
all analyses. Figures S1 and S2 show the FT-IR spectra of Pba-
PNIPAM and PpIX-DME-PNIPAM hydrogels, respectively
(see Supporting Information). 1H NMR spectra at 25 °C in
D2O for Pba-PNIPAM and PpIX-DME-PNIPAM hydrogels
confirmed the formation of the hydrogels (Figures S3 and S4).

UV−Vis and Fluorescence Properties of PS−Nano-
hydrogels. The UV−vis absorption of free PpIX monomers in
H2O and DMF is shown in Figure 3a. PpIX in MDF is in the
monomeric state as indicated by a single, sharp Soret band at
409 nm. In an aqueous environment, PpIX occurs as dimers/
aggregates (vide supra) and shows two broadened bands at 351
nm with a molar absorption coefficient of ε = 0.34 × 105 M−1

cm−1 and 450 nm (ε = 0.33 × 105 M−1 cm−1). PpIX is a planar
molecule which is easily aggregated in aqueous solution.
Absorption spectra for PpIX-PNIPAM in water clearly showed
that PpIX exists as a monomer in the hydrogel, even at high
concentrations (Figure 3c). In contrast to free PpIX in aqueous
solution, no significant aggregation was observed in the 2−4 wt
% range of PpIX in PNIPAM, as indicated by the sharp Soret
band at 405 nm with a high molar absorption coefficient (ε =
0.509 × 105 M−1 cm−1).
The fluorescence spectrum of PpIX in DMF showed strong

fluorescence at 631 nm (λex = 409 nm). For neat PpIX in water
(Figure 3b) the fluorescence intensity was weakened
accompanied by a blue-shift (λex = 409 nm, λem = 622 nm).
In comparison, the fluorescence emission spectra of the PpIX-

Figure 3. (a) UV−vis spectra of protoporphyrin IX (1.5 × 10−4 M) in H2O and DMF (1.5 × 10−5 M) and PpIX-PNIPAM hydrogel (1.5 × 10−5 M)
in H2O. (b) Fluorescence emission spectra of PpIX in DMF and H2O (λex = 409 nm). (c) UV−vis absorption spectra of PpIX-PNIPAM hydrogel at
different concentrations of protoporphyrin IX in the hydrogel structure (2%, 3%, and 4%) in H2O (the concentration of PpIX in 4% PpIX-PNIPAM
hydrogel = 1.5 × 10−5, in 3% = 1.1 × 10−5, and in 2% = 0.75 × 10−5 M. (d) Fluorescence spectra of PpIX-PNIPAM hydrogel (λex = 409 nm) at
different concentrations of protoporphyrin IX in H2O.
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PNIPAM nanohydrogel for different concentrations of photo-
sensitizers (Figure 3d) revealed an increase in emission
intensity (λem = 632 nm) with increasing concentration of
photosensitizer in the nanohydrogel structure. This is further
proof that the porphyrin units in the hydrogel structure exist
mostly as “monomers”, i.e., are spatially well separated and not
aggregated. The absence of aggregation is crucial for effective
PDT as aggregated PpIX shows low photoactivity. Details of
the UV−vis absorption and fluorescence data of the various free
PS and PS−hydrogel structures using different solvents are
summarized in Table 1.

Pba and PpIX-DME are hydrophobic compounds, insoluble
in water or biological media. Clearly, addition of these
compounds as copolymers and incorporation into the PNIPAM
hydrogel structure result in good water solubility. The
fluorescence spectrum of the Pba-PNIPAM hydrogel in H2O
exhibited a fluorescence emission band at 681 nm (λex = 409
nm), while PpIX-DME-PNIPAM in water emitted at 623 and

690 nm (λex = 404 nm). In all cases the photophysical
properties of the PS−hydrogels indicate a significant increase in
utility of use of such preparations of PpIX, Pba, and PpIX-DME
in biological media as theranostic agents.

Dynamic Light Scattering and Morphological Anal-
ysis of the Hydrogels. The structure of the PpIX-PNIPAM
hydrogel samples was investigated by SEM (scanning electron
microscopy). Figure 4a−c shows SEM images of the surface
structure of the freeze-dried PpIX-PNIPAM hydrogel samples.
The PpIX-PNIPAM hydrogels are characterized by a highly
macroporous, spongelike structure. Most likely the exclusion
volume of PpIX provides spatial hindrance during the
polymerization and cross-linking process resulting in a more
porous structure to the former.35 The images in Figure 4a−c
illustrate that the PpIX-PNIPAM nanohydrogel forms a 3D
scaffold with porous layers, in which water can be trapped.
Nanoparticles are formed in a submicrometer porous scaffold,
and a nanostructured morphology is present in the supra-
molecular hydrogel. The nanoparticles are uniformly distrib-
uted on the surface and aggregation does not occur. In addition,
the microporous hydrogel enables PpIX to be delivered
effectively to cancer cells as these structures serve as scaffolds
for distribution of PpIX as a copolymer in 3D porous systems.
SEM images of Pba-PNIPAM and PpIX-DME-PNIPAM

nanohydrogels are shown in Figure S5. The properties of the
different PS−hydrogels were also studied by dynamic light
scattering (DLS), the size and size distribution of which are
summarized in Table 2. DLS analysis for the PpIX-PNIPAM
nanohydrogel at different concentrations of PS (2%, 3%, and
4%, w/w) indicated a single peak distribution with a mean
diameter of 232 ± 30, 238 ± 15, and 309 ± 25 nm, respectively
(Figure 4d−f). Increasing amounts of PpIX conjugated in the
hydrogel leads to an increase in size. However, one has to
consider that with a significantly higher content of PpIX
extended hydrophobic domains are formed slowing down
dissolution of the hydrogel in water, and only moderate size
growth is observed.36

Table 1. Absorption and Fluorescence Spectroscopic
Characteristics of PS and PS−Hydrogels

PS sample
PS

(wt %)
Soret bands

(nm) Q-bands (nm)
emission
(nm)

free PpIX (H2O) 351, 450 537, 565, 595,
645

622

free PpIX (DMF) 409 510, 543, 578,
632

631

PpIX-PNIPAM
(H2O)

4 405 510, 543, 582,
647

632

PpIX-PNIPAM
(DMF)

4 409 508, 545, 580,
635

633

free Pba (DMF) 409 504, 539, 610,
670

675

Pba-PNIPAM (H2O) 3 362 558, 610, 673 681
free PpIX-DME
(DMF)

404 509, 539, 578,
630

627, 696

PpIX-DME-PNIPAM
(H2O)

3 403 505, 538, 576,
628

625, 690

Figure 4. (a, b, c) SEM images of PpIX-PNIPAM hydrogels at different magnifications; (d, e, f) hydrodynamic diameter of PpIX-PNIPAM hydrogel
with 2%, 3%, and 4% PS, respectively, as determined by dynamic light scattering.
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In addition, a well-defined and narrow particle size
distribution was found with a mean polydispersity index of
0.272 for the PpIX-PNIPAM nanohydrogel. DLS analysis for
Pba-PNIPAM and PpIX-DME-PNIPAM nanohydrogels was
only carried out for the sample with 3% of the cross-linker. The
size and size distribution of Pba-PNIPAM and PpIX-DME-
PNIPAM nanohydrogels showed a single peak distribution with
hydrodynamic diameters of 283 ± 13 and 317 ± 15 nm,
respectively (Figure S6).
Thermoresponsive Properties. PNIPAM as a thermo-

sensitive polymer for biomedical application is well-studied.37

Hydrogen bonding between the hydrophilic group
(−CONH−) in the PNIPAM chain and the surrounding
water molecules results in good solubility. However, hydro-
phobic interactions involving the isopropyl side group (−CH-
(CH3)2) and water results in precipitation when the temper-
ature nears the lower critical solution temperature (LCST). At
this temperature, the polymer faces a phase transition from fully
hydrated chains to hydrophobic, collapsed chains.38 The LCST
of pure PNIPAM (32 °C) is lower than the physiological
temperature. As a result, in vivo applications require a tuning of
the LCST to the physiological temperature of 37 °C.39 Here,
N-isopropylacrylamide was copolymerized with different
porphyrins and chlorophyll monomers to obtain photo-
sensitizer-based hydrogels.
The LCSTs of the three different types of hydrogel under

study were determined by measuring the temperature-depend-
ent transmittance (transmittance at 300 nm) and using
dynamic differential scanning calorimetry (DSC). Figure 5a
shows the temperature-dependent transmittance of the PpIX-
PNIPAM hydrogel solution in water. The study indicates that
the hydrogel is molecularly soluble and a soluble-to-insoluble
transition occurs when the temperature rises above the LCST
of 44 °C; this was confirmed by DSC measurements which
showed a LCST at 44.52 °C (Figure 5b). The LCSTs of Pba-
PNIPAM and PpIX-DME-PNIPAM nanohydrogels were
determined as well. The latter (Figure 5d) exhibits a soluble-
to-insoluble transition above a LCST of 35 °C. In the case of
Pba-PNIPAM, no improvement in the LCST temperature (30
°C, Figure 5c) was observed.
The phase transition of PNIPAM (32 °C)40 is related to

changes of the hydration and dehydration at different
temperatures.41 In the case of PNIPAM/PpIX, PNIPAM/
PpIX-DME, and PNIPAM/Pha nanohydrogels the LCSTs are
44, 35, and 30 °C, respectively. A decrease in LCST for
PNIPAM/Pha was observed, but the others showed an increase
in LCST. Normally, the presence of hydrophobic chains in
PNIPAM structures causes a decrease in LCST point due to an

increase in hydrophobic interactions.42 The different LCSTs for
PNIPAM/PpIX and PNIPAM/PpIX-DME nanohydrogels can
be explained as follows, taking into account that PpIX and
PpIX-DME can form two cross-linking bonds with the polymer
while Pha can form only one. First, PpIX and PpIX-DME could
form hydrophobic cores with a diffuse corona of PNIPAM

Table 2. Data for Hydrodynamic Diameter (Dh) and Size
Distribution (PDI) at Different Concentrations of PpIX in
PNIPAM Hydrogels and Data for Pba-PNIPAM and PpIX-
DME-PNIPAM (3 wt % PS) As Determined by DLS at 25
°C; Relative Singlet Oxygen Quantum Yield (ΦΔ) and
Efficiency of Singlet Oxygen Delivery (ηΔ) for the Same
Systems

PS sample Dh (nm) PDI ΦΔ ηΔ

PpIX-PNIPAM 2% 235 ± 5 0.233 n.d. n.d.
PpIX-PNIPAM 3% 238 ± 6 0.284 1.24 0.69
PpIX-PNIPAM 4% 309 ± 6 0.318 n.d. n.d.
PpIX-DME-PNIPAM 3% 317 ± 7 0.393 1 0.58
Pba-PNIPAM 3% 283 ± 5 0.326 0.84 0.62

Figure 5. (a) Transmittance versus temperature plots for PpIX-
PNIPAM hydrogel (1.35 × 10−5 M) in water. (b) DSC thermogram of
PpIX-PNIPAM nanohydrogel in water. (c) Transmittance versus
temperature plots for Pba-PNIPAM nanohydrogel and (d) PpIX-
DME-PNIPAM nanohydrogel (1.35 × 10−5 M) in water.
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chains to accelerating the formation of nanohydrogels, and this
would isolate the hydrophobic porphyrins from water and
repress the hydrophobic effects of the materials.43 Another
aspect is steric hindrance. Because of the densely organized
polymeric network, the steric hindrance of the cross-linkers will
affect the temperature dependence of the structure.44 Here, the
large planar structure of doubling-linked porphyrins could
decrease the tendency of PNIPAM chains to shrink and
increase the LCST temperature. Note that a similar trend was
also observed in our previous results.28 PNIPAM/PpIX and
PNIPAM/PpIX-DME connect through two points in the
hydrogel structure, resulting in a more rigid structure that
reduces the freedom of the PpIX and PpIX-DME porphyrins in
the hydrogel structure and reduces hydrophobic interactions.
The different impact of PpIX and PpIX-DME units is clearly a
result of the absence of the hydrophilic carboxylic acid groups
in the latter. With only one connecting unit in Pha the overall
network might remain more flexible and thus less susceptible to
steric effects and the hydrophobic effect of the chlorin unit
dominant. Thus, the PpIX-PNIPAM hydrogel is most suitable
for biological applications in terms of thermoresponsive
behavior.
Singlet Oxygen Measurements. In order to gain a

measure on the singlet oxygen generating capacity of the
hydrogels 1O2 production was measured by reaction with 1,3-
diphenylisobenzofuran (DPBF) using TPP as a standard.33 The
results of the irradiation of the samples in the presence of
DPBF (absorption monitored at 417 nm) with time are shown
in Figure 6. Figure 6b shows the decrease in DPBF absorption

over time for PpIX-PNIPAM, Pba-PNIPAM, and PpIX-DME-
PNIPAM nanohydrogels compared to TPP and a blank
reference without PS. The efficiency of singlet oxygen delivery
(ηΔ) of PpIX-PNIPAM, Pba-PNIPAM and PpIX-DME-
PNIPAM nanohydrogels was calculated by eq 1, and the
values are summarized in Table 2. The results indicate all PS-
conjugated PNIPAM hydrogels produce singlet oxygen
efficiently. The singlet oxygen quantum yield of TPP in
DMSO is 0.52;33 PpIX-PNIPAM, Pba-PNIPAM, and PpIX-
DME-PNIPAM gave values of 0.69, 0.62, and 0.58 in DMSO,
respectively. These are promising values as the individual PS are
not very efficient 1O2 generators in water due to aggregation
and excited state quenching. Clearly, the nanoporous 3D
structure of the hydrogel prevents the aggregation of
porphyrins and increases the efficiency of singlet oxygen
production in new PNIPAM-based hydrogels. The relative
singlet oxygen quantum yields (ΦΔ) of the hydrogels were
calculated from the slope of the DPBF degradation in the
presence of TPP as reference and are listed in Table 2.

In Vitro Photocytotoxicity. Good biocompatibility of the
photosensitizer-based hydrogels is important for biomedical
applications, and thus the various hydrogel preparations were
evaluated for their cytotoxicity using HT-29 cells. Cell viability
was measured with the MTT colorimetric assay after 1 h
incubation. As shown in Figure 7, the PpIX-PNIPAM hydrogel

exhibited excellent biocompatibility; cell viability remained at
>90% even at high PS concentrations. Upon irradiation with
light, photocytotoxicity occurred, and the cell viability
dramatically decreased. The drug dose required to inactivate
90% (LD90) of the HT-29 cells was established as
approximately 75 nM. The sharp on/off light dependency of
toxicity and excellent LD90 value suggest that this PpIX-
PNIPAM hydrogel has significant potential in future studies.
The data compare favorably with related studies on using PpIX
as photosensitizer in vitro.45,46

Figure 6. (a) UV−vis spectra of DPBF in the presence of PpIX-
PNIPAM 3% hydrogel as a function of laser irradiation time
(polychromatic light source). (b) DPBF consumption measured at
417 nm over time in solutions of PpIX-PNIPAM, Pba-PNIPAM,
PpIX-DME-PNIPAM, and TPP in DMSO.

Figure 7. Cell viability after incubation of HT-29 cells with the PpIX-
PNIPAM hydrogel (3% PS in hydrogel structure w/w) at different
concentrations (1.5 × 10−5−1.0 × 10−8 M) with irradiation by halogen
lamp and without irradiation. Photocytotoxicity is represented as
percent cell death after 1 h treatment (illumination, 20 J cm−2, 14
min).
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Figure 8 shows the cytotoxicity (in the dark) and
photocytotoxicity (with irradiation) of Pba-PNIPAM and
PpIX-DME-PNIPAM nanohydrogels on HT-29 cells. No
significant cytotoxicity was observed for the Pba-PNIPAM
nanohydrogel up to 9 × 10−5 M (100% cell viability), and the
PpIX-DME-PNIPAM sample did not show any significant
cytotoxicity up to 6 × 10−5 M. The results show that dark
cytotoxicity of the hydrogels are comparable.
Next, the photocytotoxicity analysis of the Pba-PNIPAM and

PpIX-DME hydrogels was evaluated using HT-29 cells (Figure
8). Pba-PNIPAM gave a LD90 of 9 × 10−5 M, as opposed to 5 ×
10−7 M for Pba alone,47 while the respective value for PpIX-
DME-PNIPAM was determined as 12 × 10−5 M. Additionally,
in both cases the efficiency increased gradually with larger
concentrations of PS. Interestingly, HT-29 cells treated with
PpIX-PNIPAM showed a sharp dose-dependent phototoxicity
upon light irradiation. For example, the cell viability upon
illumination decreased from 100% to 10% when the PS
concentration was increased from 6.8 × 10−8 to 7.5 × 10−8 M.
Without irradiation no such effect was observed.

■ CONCLUSIONS

In summary, poly(N-isopropylacrylamide)−PSs (PpIX, Pba,
and PpIX-DME) hydrogels have been successfully synthesized
with different percentages of photosensitizers as a copolymer in
the hydrogel structure. Incorporation of the PS functionalities
was easily achieved using the dispersion polymerization method
by mixing organic and aqueous solvents. Significantly,
spectroscopic data prove that the porphyrin units are
incorporated in a “monomeric” manner, without aggregation
and thus capable of significant singlet oxygen production. In the
case of the PpIX-PNIPAM hydrogel, the absorption spectrum
has a sharp Soret band at 405 nm, clearly indicating the absence
of aggregation, which is further confirmed by its strong
fluorescence emission.
DLS measurements and SEM observation of the hydrogels

confirmed the formation of nanohydrogels with diameters of
200−300 nm, i.e., suitable for tissue targeting via the EPR
effect. All hydrogels showed a high efficiency of singlet oxygen
generation, and notably, the PpIX-PNIPAM hydrogel was
biocompatible, with no in vitro cytotoxicity in the low

micromolar range. Significantly, photocytotoxicity studies
demonstrated a dose-dependent generation of singlet oxygen
and toxicity with an outstanding LD90 of 75 nM for HT-29
cells. Note that many of the other PS (formulations) under
study are much less active. In comparison, Pba-PNIPAM and
PpIX-DME-PNIPAM nanohydrogels show reasonable biocom-
patibility and acceptable photocytotoxicity. Clearly, the PpIX-
PNIPAM hydrogel has the most potential for in vivo
investigations and will be the subject of further studies.
All PS−hydrogel preparations showed that using the PS as a

chemical cross-linker (copolymer) during hydrogel formation is
an effective means (a) to solubilize the photosensitizer for use
in aqueous media, (b) to prepare formulations where the PS is
effectively monomeric, i.e., photoactive and capable of
significant 1O2 production, (c) can be used to modulate the
LCST to physiologically relevant parameters, and (d) can yield
highly effective light-activated PDT drug candidates.
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