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Abstract: Fe and Co co-doped Mn-Ce/TiO2 (MCT) catalysts were investigated for the 

simultaneous removal of nitric oxide (NO) and elemental mercury (Hg0) at reaction 

temperature lower than 200 °C. The catalysts were characterized by Brunauer–Emmett–

Teller (BET), temperature program reduction (TPR), scanning electron microscope 

(SEM), x-ray diffraction (XRD) and x-ray photoelectron spectroscopy (XPS) analysis. 

The experimental results showed that the co-doped 2Fe4Co-MCT catalyst exhibited 

better performance for the simultaneous removal of NO and Hg0 compared to Fe or Co 

doped catalysts. This could be due to higher BET surface area and better redox property 

of 2Fe4Co-MCT catalyst. In addition, we propose that chemisorbed O2 played a 

dominant role in selective catalytic reduction (SCR) of NO while lattice O2 played a 

key role in Hg0 oxidation. The results also indicate that the introduction of Fe species 

enhanced the activity of SCR, whereas the introduction of Co species enhanced the 

oxidation of Hg0. The synergistic effect of Fe and Co species in the 2Fe4Co-MCT 

catalyst are also suggested to be an important mechanism for simultaneously removing 

NO and Hg0. 
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1. Introduction 

Mercury emitted from coal-fired power plants, cement kiln and solid waste incineration 

units normally has three forms: 1) elemental mercury (Hg0), 2) Oxidized mercury (Hg2+) 

and 3) Particle-bond mercury (Hgp) [1, 2]. Hgp can be easily removed by dust removal 

systems such as electrostatic precipitator or bag-type dust remover. Hg2+ is soluble in 

water and can be easily captured by wet flue gas desulfurization (WFGD) scrubber. 

However, Hg0 is volatile and insoluble in water Common air pollution control devices 

(APCDs) is normally used to remove mercury. The overall efficiency of mercury 

removal in APCDs ranges from 43.8% to 94.9%, depending on the form of mercury 

and the operating conditions [3]. To meet the increasingly strict environmental 

standards of mercury control, it is necessary to develop an enhanced or supplementary 

process to increase the removal of mercury.  

There are two key approaches to enhance the removal of mercury from flue gas. The 

first method is to absorb mercury using adsorbents. The other method is to oxidize Hg0 

to Hg2+ which can then be captured by downstream WFGD. The injection of powder 

carbon materials has been commercially applied for the removal of mercury from flue 

gas. To enhance the chemisorption of Hg0 on the surface of carbon-based adsorbents, 

various reagents have been used to modify these carbonaceous adsorbents. For example, 

activated carbons were treated by acids including H2SO4, HNO3 or HClO4 to enhance 

the removal of Hg0, due to the formation of oxygen-containing (C-O) or chlorine-

containing groups (C-Cl) on the surface of the adsorbents [4]. Various kinds of chlorides 

such as ZnCl2 [5-8], FeCl3 [7] and NH4Cl [8] were used as predecessors to modify 
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carbonaceous adsorbents to improve the efficiency of mercury removal. The 

chemisorption between carbonaceous materials and Hg0 was enhanced after the 

modification of adsorbent such as sulfur treatment [9] and the addition of CeO2 [7, 10] 

However, using sorbent to remove Hg0 has some drawbacks [11]: 1) a large amount of 

sorbent is required for the adsorption of Hg0 indicating the high cost of sorbent use; 2) 

the disposal challenges of the exhaust sorbents mixed with fly ash.  

In flue gas, the oxidation of Hg0 to Hg2+ could be obtained using oxidants such as a 

mixture of urea and KMnO4 solution [12], NaClO2 solution [13-15], H2O2 solution [16, 

17], K2FeO4 [18], and Fenton reagent [19, 20]. However, the corrosive nature of the 

oxidants limits the deployment of such technology, even though the direct oxidation of 

Hg0 using oxidants has higher removal efficiency. Therefore, the oxidation of Hg0 by 

catalyst seems to be a preferable alternative because it has a low secondary pollution. 

CePO4 catalyst was employed to capture elemental mercury and showed much better 

performance in Hg0 removal compared with a commercial SCR catalyst [21]. The 

CePO4 catalyst promoted the formation of nitrogen dioxide (NO2) from NO oxidation. 

And NO2 was effective to react with Hg0 ad-species (e.g., Hg2O) [21]. LaMnO3 

perovskite oxide was chosen to remove Hg0. The results indicated that mercury 

primarily existed as Hg–O, and the used LaMnO3 catalyst can be regenerated using 

thermal desorption [22]. La1-XSrXMnO3 have been investigated to oxidize Hg0 at low 

temperature of 100-200 °C [23]. Due to the low cost and the excellent performance for 

mercury oxidation, TiO2-supported catalysts have been widely investigated to remove 

mercury including molybdenum (Mo) and ruthenium (Ru) modified V2O5-WO3/TiO2 
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[24], Ce-doped V2O5-CeO2/TiO2 [25], nanosized V2O5/TiO2 [26] and MnOX-CeO2/TiO2 

[27, 28].  

In addition, more strict regulations are applied to reduce the emission of other pollutants 

(e.g. NOx) in coal-fired power plants. At the moment, medium temperature selective 

catalytic reduction (SCR, around 350 °C) is commercially available for the removal of 

NOx in coal-fired power plants. However, the installation of medium temperature SCR 

system needs a large space which should be located before the removal of particulate 

matter. Installing low temperature SCR system (less than 200 °C) could solve the 

problem, as the SCR catalyst is unlikely to be deactivated compared with the catalyst 

for medium-temperature SCR. Therefore, the simultaneous removal of NO and Hg0 by 

the oxidation at low temperature SCR system employing various catalysts has been 

proposed and investigated [29, 30].  

In terms of low temperature SCR, MnOx based catalyst has been widely studied [31-

33]. Ji et al. [34] found that MnOx/TiO2 catalyst could achieve high efficiency for the 

removal of NO at low temperature. Similarly, CeO2 has a large capacity of oxygen 

storage and has been extensively used as a catalyst for low temperature SCR [35, 36]. 

Our previous study showed that Ce was an efficient promoter in low temperature SCR 

[37]. Additionally, interactions between CeO2 and MnOx were found to be crucial to 

improve SCR performance as reported by Qi et al. [38]. 

Therefore, a catalyst containing Mn, Ce and TiO2 seems to be effective for the 

simultaneous removal of NOx and Hg0. In addition, Fe and Co have been widely 

examined as active sites for SCR process. Qi et al. [39] found that the addition of iron 

oxide not only increased the NO conversion but also increased the resistance to H2O 
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and SO2. Shen et al. [40] also reported that the doping of iron enhanced the dispersion 

of Mn and Ce on the surface of the catalyst. The presence of Fe3+ active sites could 

promote the oxidation of NO to NO2 by O2 resulting in an improvement of NOx 

reduction in the NH3-SCR process [41]. The formation of Co-Mn oxides was found to 

be important in SCR process [42, 43]. In addition, Co oxides have been reported to 

efficiently absorb active oxygen by generating oxygen vacancy derived from the 

conversion of Co3+/Co2+ [25, 44]. The addition of Co into nanoporous nickel phosphate 

has been reported to enhance the catalytic efficiency of NOx reduction [45, 46]. 

However, to the best of our knowledge, the co-doping of Fe and Co in Mn-Ce/TiO2 

catalyst for the simultaneous removal of NO and mercury has not been reported in 

literature. In this study, a series of Mn-Ce/TiO2 catalysts modified with Fe and Co have 

been investigated aiming to enhance the simultaneous removal of NO and Hg0 at low 

temperature. 

 

2. Experimental 

2.1. Catalyst preparation 

All catalysts were prepared by wet impregnation method. An appropriate proportion of 

precursors (the nitrate of Mn, Ce, Fe and Co) were dissolved in excess deionized water 

and a corresponding amount of TiO2 was added to the solution. The molar ratio of 

(Fe+Co): Mn: Ce: TiO2 was 0.075:0.12:0.024:1. The total moles of Fe and Co were kept 

constant while Fe/Co ratios were changed. The precursors were mixed using a water 

bath with continuous stirring at 80 °C. The samples were then dried in an oven at 120 °C 

overnight and then calcined in an electric furnace at 500 °C for 4 h. The catalysts were 

ground and sieved to granules (40-80 mesh) for further characterizations and 

experimental uses. Mn-Ce/TiO2 catalyst is indicated as MCT. MCT catalyst with Fe 

addition is assigned as 6Fe-MCT. In addition, MCT catalyst with Co addition is 
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assigned as 6Co-MCT. And 2Fe4Co-MCT indicates the MCT catalyst having a Fe/Co 

molar ratio of 2:4. 

 

2.2. Catalytic activity test 

The catalytic activities were carried out in a fixed-bed reactor as shown in Fig. 1. The 

flue gases including NO, NH3, O2 and N2 were obtained from the compressed gas tanks 

and were adjusted by mass flow controllers (MFC). A mercury permeation tube (VICI 

Metronics Inc., USA) (“U” type tube) was used to provide a uniform and stable release 

of elemental mercury vapor by the carrier gas. The “U” type tube was dipped into a 

water bath. The concentration of Hg0 entering the reactor was controlled by regulating 

the temperature of the water bath and the flow rate of the carrier gas. All gases were 

converged and blended in a mixer first and then fed to the reactor. NaOH solution was 

used to remove the residual NO and NH3, while a silica gel was used to eliminate the 

effect of water vapor. The total gas flow rate was maintained at 1500 mL min-1 with a 

gas hourly space velocity of 30000 h-1, corresponding to 3 ml catalyst was used in each 

experiment. The concentrations of NO and Hg0 at the inlet and outlet of the reactor were 

monitored and measured by a flue gas analyzer (KM900, Kane International Ltd, UK) 

and a Hg analyzer (MI VM-3000, Germany), respectively. 

The removal efficiency or conversion of NO NO(E )  and Hg0 0Hg
(E )  was defined by 

Eqs. 1 and 2, respectively. In equations (1) and (2), NOin and NOout represent the NO 

concentrations at the inlet and outlet of the reactor, and Hg
in

0  and Hg
out

0  represent the 

Hg0 concentrations at the inlet and outlet of the reactor, respectively. 
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To investigate the performance of catalysts for the simultaneous removal of NO and 

Hg0, a series of experiments were carried out. The experimental conditions are 

summarized in Table 1. Set A experiments were conducted to compare the performance 

of the Fe/Co co-doped catalyst with only Fe or Co doped Mn-Ce/TiO2 (MCT) catalyst 

for simultaneously removing NO and Hg0. Set B and Set C experiments were conducted 

to investigate the interaction between the removal of NO and the reduction Hg0 at 

different temperature using the 2Fe4Co-MCT catalyst. Set D experiments were set up 

to investigate the influence of flue gas components on the removal of Hg0 in the 

presence of the 2Fe4Co-MCT catalyst. 

 

2.3. Catalyst characterization 

BET surface area, pore volume and pore size of the catalysts were determined by 

nitrogen adsorption/desorption at –196 °C using a Micromeritics Accelerated Surface 

Area and Porosimetry (ASAP) 2020 instrument. Scanning electron microscopy (SEM) 

was performed using a scanning electron microscope (SS-550, Shimadzu, Japan). 

Powder x-ray diffraction (XRD) measurement was used to identify the crystal structures 

of the catalysts with Rigaku D/Max 2500 system using Cu Kα radiation (40 kV, 100 

mA) (Rigaku Corporation, Japan).  
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Temperature programmed reduction of H2 (H2-TPR) was conducted on a PCA-1200 

chemisorption analyzer using 100 mg of catalysts to analyze the redox properties of the 

catalysts. Prior to the TPR experiment, the catalyst samples were dried in a N2 flow (30 

mL min-1) for 2 h at 200 °C. After drying the catalyst samples, the reduction experiment 

was performed in a mixture gas (30 mL min-1) containing 5% H2 and balance N2 from 

100–900 °C with a heating rate of 10 °C min-1. The concentration of H2 from the outlet 

of the system was monitored by a thermal conductivity detector (TCD). The surface 

atomic state of the fresh and used 2Fe4Co-MCT catalysts was investigated by x-ray 

photoelectron spectroscopy (XPS) using Al-K radiation (hν = 1486.6 eV) 

monochromate, calibrated using the C1s (284.6ev) as an internal reference. 

 

3. Result and discussion 

3.1. Catalytic activity 

Fig. 2 shows the results of the simultaneous removal of NO and Hg0 for the Set A 

experiments. From Fig. 2(a), the efficiency of NO removal was increased when the 

temperature was increased from 100 to 200 °C. Fig. 2(b) shows the efficiency of Hg0 

removal over the catalyst in the presence of 500 ppm NO and 500 ppm NH3 (SCR 

conditions). The removal efficiency of Hg0 increased between 100 and 150 °C. 

However, the removal efficiency of Hg0 was decreased as the reaction temperature 

increased from 150 to 300 °C. A higher temperature seems to be unfavorable for the 

removal of Hg0. In particular when the reaction temperature was higher than 250 °C. 

Nevertheless, the 2Fe4Co-MCT catalyst exhibited the highest efficiency of the 

simultaneous removal of NO and Hg0 compared with the Fe or Co doped catalysts. 
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To further understand the effect of Hg0 on NO removal by the 2Fe4Co-MCT catalyst, a 

series of experiments were carried out (as Set B listed in Table 1). As shown in Fig. 2(c), 

the efficiency of NO removal was gradually increased between 100 and 200 °C and 

then decreased with an increase of the reaction temperature from 200 to 300 °C. This is 

true irrespective of the experiments carried out in the absence or in the presence of Hg0. 

The maximum NO removal efficiency was achieved at 200 °C. At temperature over 

200 °C, the introduction of Hg0 had little effect on the removal of NO. It is suggested 

that the concentration of Hg0 was very small compared to the concentration of NO in 

the flue gas. The inhibition of NO removal by Hg0 at temperature lower than 200 °C 

could be due to the greater adsorption of mercury species on the catalytic surface at low 

temperature, thereby reducing the availability of active sites for SCR reactions. 

To investigate the effect of SCR conditions on the removal of Hg0, the removal of Hg0 

was investigated with or without the addition of NO and NH3 at temperature between 

100 and 300 °C. As shown in Fig. 2(d) (experiments as Set C), the presence of NO and 

NH3 (SCR conditions) had a negative influence on the removal of Hg0. For example, 

the efficiency of Hg0 removal was reduced significantly from 92% at 100 °C to 55% at 

250 °C, when the SCR condition was used in the experiment. This could be due to that 

NH3 species significantly occupied the active sites on the surface of the catalyst. 

Therefore, there were less surface areas for Hg0 adsorption [27, 47]. 

The effect of the presence of other flue gas components on the removal of Hg0 was 

studied in Set D experiment. As shown in Fig. 2(e), the outlet concentration of Hg0 was 

increased rapidly and almost reached a breakthrough after 12 h when only N2 was used 
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as carrier gas. With the addition of O2, the removal efficiency of Hg0 was enhanced 

significantly, as the outlet concentration of Hg0 was reduced from 28 μg m-3 to around 

7.5 μg m-3. Therefore, the oxidation of Hg0 on the surface of the catalyst was enhanced 

in the presence of O2. The addition of 500 ppm NO showed little effect on the removal 

of Hg0, indicating that the addition of NO was not the main factor affecting Hg0 removal. 

On the contrary, NO was reported to promote the oxidation of Hg0 in the presence of a 

Ce-MnOx/Ti-PILCs catalyst [40]. From Fig. 2(e), the addition of 500 ppm NH3 (without 

NO in flue gas) inhibited the removal of Hg0, demonstrating that NH3 was the main 

component competing for active sites with Hg0
 on the surface of the catalyst. This 

observation is consistent with other reports regarding the competitive adsorption of NH3 

with Hg0 [48, 49]. 

 

3.2. Catalyst characterizations 

The physical properties of the produced Mn-Ce/TiO2 (MCT) catalysts are listed in Table 

2. The BET surface area of the Mn-Ce/TiO2 was 17.06 m2 g-1. Among the three 

modified catalysts, the 2Fe4Co-MCT catalyst achieved the highest BET surface area of 

23.02 m2 g-1, while the BET surface area of the 6Fe-Mn-Ce/TiO2 catalyst and the 6Co-

Mn-Ce/TiO2 catalyst were 22.25 m2 g-1 and 16.37 m2 g-1, respectively. The BET 

surfaces area, pore volume and pore size of catalysts all increased after the doping of 

Fe and/or Co. The increase of BET surfaces area and porosity is beneficial for the 

transfer of gas molecules in the interspace of the catalysts. Enhanced gas transfer in the 

catalyst is  favorable for SCR reactions and the removal of mercury [50]. 

SEM pictures of the fresh catalysts are shown in Fig. 3. The agglomeration of particles 
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is observed on the surface of the fresh MCT catalyst. Particle agglomeration is reduced 

with the addition of Fe or Co. The 2Fe4Co-MCT catalyst has uniform distribution of 

metal particles suggesting that the co-addition of Fe and Co enhanced the distribution 

of metal particles on the surface of the catalyst. 

The XRD patterns of the MCT, the 6Fe-MCT, the 6Co-MCT, the 2Fe4Co-MCT and 

anatase TiO2 catalysts are shown in Fig. 4. All peaks were attributed to anatase TiO2 

and peaks related to the oxides of Fe, Co, Mn and Ce could be hardly found. This might 

be due to the concentrations of metal oxides were low or the size of crystals presented 

on the surfaces of TiO2 was too small to be detected by XRD.  

The redox properties of the fresh catalysts were studied by H2-TPR analysis. The results 

are shown in Fig. 5. A broad peak between 250 and 500 °C and one peak near 550 °C 

could be observed for the Mn-Ce/TiO2 catalyst. The first reduction peak around 360 °C 

could be assigned to the reduction of MnO2 to Mn2O3, while the reduction peak at 

460 °C was possibly attributed to the stepwise reduction of Mn2O3 to MnO [25, 51, 52]. 

The peak occurred near 550 °C was likely due to the stepwise reduction of Ce4+ to Ce3+ 

[43]. Fig. 5(b) shows the H2-TPR profile of the 6Fe-Mn-Ce/TiO2. In addition to similar 

reduction peaks to the Mn-Ce/TiO2 at temperature between 250 and 500 °C, some small 

broad reduction peaks between 550 and 800 °C are found for the 6Fe-Mn-Ce/TiO2 

catalyst, due to the addition of Fe species. The reduction peaks around 605 and 695 °C 

could be ascribed to the stepwise reduction process of Fe3O4→FeO→Fe [51, 53, 54]. 

The width and intensity of these peaks around 250–550 °C increased, especially at 

temperature near 342 and 486 °C. The peaks at 342 and 376 °C could be attributed to 
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the simultaneous reduction of MnO2 to Mn2O3 and Fe2O3 to Fe3O4 [51, 53, 55], while 

the reduction peak at 486 °C may be assigned to the coinstantaneous reduction of 

Mn2O3 and CeO2 [51, 55].  

Fig. 5(c) shows the H2-TPR profile of the 6Co-Mn-Ce/TiO2 catalyst. Similar to the Mn-

Ce/TiO2, three reduction peaks between 250 and 500 °C and two new broad peaks above 

500 °C are observed. The interaction between Co and Mn to form compound has been 

reported [25, 56, 57]. The three reduction peaks at 317 °C, 362 °C and 430 °C were 

suggested to be the combined reduction of Co3O4, MnOx, CoMnO3 and CoMn2O4 [25, 

56]. The peaks around 547 and 603 °C may be attributed to the simultaneous reduction 

of Ce4+ to Ce3+ and CoO to Co [25, 43]. Fig. 5(d) shows the reduction of Fe and Co co-

doped catalysts. Several key reduction peaks around 349 °C, 414 °C, 457 °C and 593 °C 

were observed for the TPR of the 2Fe4Co-Mn-Ce/TiO2 catalyst. The reduction around 

349 °C, 457 °C and 593 °C are similar to the reduction of the MCT catalyst (Fig. 5(a)). 

These peaks are assigned to the reduction of MnO2 to Mn2O3, the stepwise reduction of 

Mn2O3 to MnO, and the stepwise reduction of Ce4+ to Ce3+, respectively. The reduction 

around 312 °C, 349°C and 424 °C for the 2Fe4Co-Mn-Ce/TiO2 catalyst (Fig.5(d)) is 

related to the combined reduction of Co3O4, MnOx, CoMnO3 and CoMn2O4 as indicated 

in the reduction of the 6Co-Mn-Ce/TiO2 catlayst (Fig. 5(c)). The reduction around 

717 °C could be assigned to the reduction of Fe species presented in the 2Fe4Co-MCT 

catalyst.  

The intensity of the peaks in Fig. 5(d) for the 2Fe4Co-MCT, especially at the 

temperature between 500 and 700 °C, was stronger and sharper compared with the 
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catalyst doped with either Fe or Co. Therefore, the 2Fe4Co-MCT catalyst has a higher 

oxidation state as more H2 was consumed at this temperature range. From the H2-TPR 

results, the intensities and areas of the reduction curves assigned to the modified 

catalysts were increased compared to the MCT catalyst. Therefore, the catalysts doped 

with Fe or Co might have higher redox properties, especially for the 2Fe4Co-MCT 

catalyst. The higher redox property is favorable for the removal of NO and Hg0.  

 

3.3. XPS analysis of 2Fe4Co-MCT catalysts 

To reveal the mechanisms of simultaneous removal of NO and Hg0, the valence states 

of surface elements on the fresh and the used 2Fe4Co-MCT catalysts (after the removal 

of NO and Hg0) were determined using XPS and the results are listed in Table 3. The 

fresh catalysts and the used catalysts after the experimental tests are denoted as “Fresh” 

and “Used”, respectively. The “Used (SCR)” indicates the catalyst used in conventional 

SCR conditions, while the “Used (SCR+Hg)” indicates the catalyst used in SCR 

conditions where 35 μg m-3 Hg0 was added.  

Fig. 6(a) showed the O1s XPS spectra of the fresh and the used 2Fe4Co-MCT catalysts. 

Two overlapping peaks are observed in the fresh catalyst. However, a new peak at a 

higher binding energy appears in the used catalysts. The peaks appeared at binding 

energy (> 532.2 ev) in the used catalysts could be assigned to oxygen in hydroxyl 

species and/or surface adsorbed water (denoted as Oγ) [58-60]. The peaks at binding 

energy of 529.5–530.3 ev could be ascribed to lattice oxygen (denoted as Oβ) in metal 

oxides [61, 62]. The peaks at around 531–532 ev cloud be attributed to surface 
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chemisorbed oxygen and/or weakly bonded oxygen species (donated as Oα), which 

played an important role in oxidation reactions [59, 60, 62]. The relative ratios of 

different oxygen species were calculated and listed in Table 3. It could be found that 

the ratio of Oβ/Oα was increased in the “Used (SCR)” catalyst when compared to the 

fresh catalyst, demonstrating that the chemisorbed oxygen species after SCR reaction 

were decreased. Therefore, chemisorbed oxygen might play an important role on the 

conversion of NO in SCR. However, the ratio of Oβ/Oα was decreased significantly in 

the “Used (SCR+Hg)” catalyst compared to the fresh catalyst, indicating that the 

decrease of lattice oxygen was greater than that of chemisorbed oxygen. This result was 

consistent with the results reported by Zhang et al [25] and He et al [58], indicating that 

the oxidation of Hg0 was mainly attributed to the consumption of lattice oxygen in the 

catalysts.  

The valence states of various metal elements before and after reactions were shown in 

Figs. 7(b)–(e). Two distinct peaks belonging to Mn2p3/2 and Mn2p1/2 could be seen for 

all the catalysts at binding energy around 642.4 and 654 ev (Fig. 6(b)), respectively. By 

peak-fitting deconvolution, the Mn2p3/2 spectra were split into three peaks at binding 

energy of 641.2–641.8 ev, 642.2–643.4 ev and above 644 ev, which could be attributed 

to Mn3+, Mn4+ and Mn-nitrate, respectively [47, 62, 63]. The presence of Mn-nitrate 

could be ascribed to the incomplete decomposition of manganese nitrate. The 

manganese oxides existed in the form of Mn2O3 and MnO2 were the main active 

components of the catalyst for the removal of NO. The coexistence of MnO2 and Mn2O3 

is suggested to promote the oxidation of NO to NO2, and improve the efficiency of NO 
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removal in the low-temperature SCR [47, 58, 62].  

Ce3d XPS spectra are shown in Fig. 6(c). The 3d3/2 spin-orbit state is labeled with letters 

U. The 3d5/2 spin-orbit state is labeled with letters V. U’’’(916.7 ev), U’’(907.3 ev), 

U(901.0 ev), V’’’(898.4 ev), V’’(888.8 ev), V(882.5 ev) which are corresponded to Ce4+. 

And U’(903.5 ev),V’(884.9 ev) are related to Ce3+ [64]. Ce4+ and Ce3+ were coexisted 

in the fresh and the used catalysts. CeO2 has a cubic fluorite structure and typically 

possesses a relatively high density of oxygen vacancies [65], providing a higher 

oxidation state and intensified capacity of oxygen storage. Therefore, the oxidation of 

NO and Hg0 was promoted in the presence of CeO2. Ce3+ could create a charge 

imbalance, the vacancies and unsaturated chemical bonds on the surface of catalysts, 

which was helpful for the chemisorbed oxygen to be attached on the surface of catalyst 

[66, 67]. The presence of CeO2 and Ce2O3 indicates that the redox shift between Ce4+ 

and Ce3+ could easily take place, promoting the removal of mercury [59].  

Fig. 6(d) shows the XPS spectra of Fe2p in different catalyst samples. By peak-fitting 

deconvoluting, the peak at binding energy around 725 ev could be attributed to the 

Fe2p1/2 spin-orbit [53]. The peak at binding energy of 710–711 ev could be ascribed to 

Fe2+ species, while the peak at about 711–712 ev could be assigned to Fe3+ species [60, 

63]. The broad peak at around 719 ev indicates the presence of Fe3+. Therefore, Fe2+ 

and Fe3+ coexisted on the surfaces of the catalysts [40, 60].  

The fitted XPS spectra of Co2p3/2 region for the fresh and the used catalysts are shown 

in Fig. 6(e). Three peaks could be observed in all samples. The peaks at binding energy 

of 780.0–781.0ev could be attributed to Co3+ [68], while the peaks at around 781.3–
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782.6ev could be ascribed to Co2+ [43, 69]. The broad and gentle satellite structure at 

higher binding energy region could be ascribed to the shakeup process of Co2+ in the 

high spin state [69]. The results show that Co2+ and Co3+ were co-existed on the surfaces 

of the catalysts. It was reported that Co3+ species presented a relatively high oxidation 

state and resulted in more anionic defects, producing excess surface oxygen to facilitate 

the adsorption of gas molecular during NOx reduction reactions [69].  

From Table 3, the ratio of Mn4+/Mn3+ was similar between the fresh and the used 

catalysts. It has also been reported that the addition of CeO2 maintained a higher 

Mn4+/Mn3+ ratio through 2CeO2 + Mn2O3 → 2MnO2 + Ce2O3 [38, 47]. However, the 

ratios of Fe3+/Fe2+ and Co3+/Co2+ decreased after the experiments. In addition, the peaks 

assigned to Fe and Co cations shifted to higher binding energy region after the catalyst 

was used. It has been reported that the hydroxyl coordinated with metal cations was 

formed by metal species directly reacting with adsorbed NH3 [70], which may be due 

to the shift to higher binding energy.  

In the used (SCR+Hg) sample, the ratios of Ce4+/Ce3+ and Co3+/Co2+ all decreased 

apparently compared to the used (SCR) catalysts. Therefore, both Ce4+ and Co3+ played 

important roles in the oxidation of Hg0. The ratio of Mn4+/Mn3+ was slightly decreased 

in the used (SCR+Hg) sample. The change of Fe3+/Fe2+ in the used (SCR+Hg) catalyst 

was small when compared to the used (SCR) sample. Furthermore, the ratio of Fe3+/Fe2+ 

was significantly reduced in the SCR process. The results of XPS indicate that the 

introduction of Fe species in the catalyst enhanced the activity of SCR, whereas the 

introduction of Co species enhanced the oxidation of Hg0. The synergistic effect of Fe 
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and Co species might play an important role for simultaneously removing NO and Hg0. 

To identify the transformation of Hg0 on the surface of the catalyst, XPS analysis of 

Hg4f was performed for the used (SCR+Hg) catalysts and the results are shown in Fig. 

6(f). The peak at around 102.6–103.3 ev could be assigned to Si2p electron [59, 60], 

this might be due to that the reacted sample was mixed with quartz wool which was 

used to support the catalyst during the process. The small peaks at binding energy 

around 100.5–101.0 ev could be ascribed to HgO belonging to Hg4f7/2. However, no 

peaks assigned to adsorbed Hg0 (99.7–99.9 ev) was detected on the surface of the used 

catalyst. The concentration of Hg0 on the surface of the sample could be lower than the 

detection limit of XPS analysis. Another possible reason could be that the physically 

adsorbed Hg0 may have desorbed from the surface of the catalyst. The XPS results of 

Hg4f confirm that the oxidation of Hg0 by oxygen species took place on the surface of 

the catalysts. 

 

4. Conclusion 

Fe and Co co-doped Mn-Ce/TiO2 catalysts were investigated for the simultaneous 

removal of NO and Hg0 at low temperatures. The results show that the 2Fe4Co-MCT 

catalyst exhibited the best performance for the simultaneous removal of NO and Hg0 

than the only Fe or Co doped catalysts. At low reaction temperature i.e. less than 200 °C, 

the adsorption of Hg0 on the surface of catalyst was dominant compared to the 

adsorption of NO, benefiting the oxidation of Hg0. However, when the reaction 

temperature was higher than 200 °C, NH3 occupied most of the active sites on the 

surface of the catalyst, resulting in the reduction of the removal of Hg0. Further 
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experimental tests and XPS analysis indicate that chemisorbed oxygen played a 

dominant role in SCR of NO, while lattice oxygen played a dominant role in Hg0 

oxidation. Additionally, the introduction of Fe species in the catalyst enhanced the 

activity of SCR whereas the introduction of Co species enhanced the oxidation of Hg0. 
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Table 1  

Experimental conditions using different MCT based catalysts 

Experiments Catalysts 
Gas Atmosphere (Total flow rate = 1500 mL 

min-1) 

Temperature

（°C） 

Set A 

6Co-

MCT，

6Fe-

MCT，

2Fe4Co-

MCT 

N2 + 5% O2 + 500 ppm NO + 500 ppm NH3 + 

35 μg m-3 Hg0 
100–300 

Set B 
2Fe4Co-

MCT 

N2 + 5% O2 + 500 ppm NO + 500 ppm NH3 

N2 + 5% O2 + 500 ppm NO + 500 ppm NH3 + 

35 μg m-3 Hg0 

100–300 

Set C 
2Fe4Co-

MCT 

N2 + 5% O2 + 35 μg m-3 Hg0 

N2 + 5% O2 + 500 ppm NO + 500 ppm NH3 + 

35 μg m-3 Hg0 

100–300 

Set D 
2Fe4Co-

MCT 

N2 + 35 μg m-3 Hg0 

N2 + 5% O2 + 35 μg m-3 Hg0 

N2 + 5% O2 + 500 ppm NO + 35 μg m-3 Hg0 

N2 + 5% O2 + 500 ppm NH3 + 35 μg m-3 Hg0 

N2 + 5% O2 + 500 ppm NO + 500 ppm NH3 + 

35 μg m-3 Hg0 

200 
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Table 2  

Physical characteristics of selected catalysts 

Catalysts 
BET surface 

area (m2 g-1) 

Pore volume  

(cm3 g-1) 

Pore size  

(nm) 

Mn-Ce/TiO2 17.06 0.029 6.90 

6Fe-Mn-Ce/TiO2 22.25 0.048 8.71 

6Co-Mn-Ce/TiO2 16.37 0.032 7.83 

2Fe4Co-Mn-Ce/TiO2 23.02 0.044 7.62 
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Table 3  

Relative concentration ratios of different catalysts 

Samples 
Relative concentration ratios 

Mn4+/Mn3+ Ce4+/Ce3+ Fe3+/Fe2+ Co3+/Co2+ Oα/OT Oβ/OT Oβ/Oα 

Fresh 0.88 4.3 1.42 1.68 0.44 0.56 1.27 

Used (SCR) 0.87 4.32 1.18 1.56 0.24 0.46 1.91 

Used (SCR + Hg) 0.81 4.04 1.2 1.09 0.41 0.29 0.70 
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Figure 1 Schematic diagram of experimental system set-up 
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(a)                               (b) 

  

(c)                               (d) 

  

(e) 

Figure 2 Effect of (a) NO removal efficiency; (b) Hg0 removal efficiency; (c) Hg0 on 

NO removal efficiency; (d) SCR conditions on Hg0 removal efficiency and (e) Flue 

gas components on Hg0 removal on the simultaneous removal of NO and Hg0 using 

different catalysts 
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(a) 2Fe4Co-MCT                   (b) 6Co-MCT 

  

(c) 6Fe-MCT                     (d) MCT 

 

Figure 3 SEMs results of MCT, 6Fe-MCT, 6Co-MCT, 2Fe4Co-MCT 
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Figure 4 XRD results of MCT, 6Fe-MCT, 6Co-MCT and 2Fe4Co-MCT catalysts 
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Figure 5 H2-TPR of (a) Mn-Ce/TiO2, (b) 6Fe-Mn-Ce/TiO2, (c) 6Co-Mn-Ce/TiO2 and 

(d) 2Fe4Co-Mn-Ce/TiO2 catalysts 
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(a)                                 (b)

 

(c)                                 (d) 

 

(e)                                 (f) 

Figure 6 XPS spectra of different samples. (a) O1s; (b) Mn2p; (c) Ce3d; (d) Fe2p; (e) 

Co2p and (f) Hg4f 


