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Abstract 

Environmental DNA (eDNA) is a promising tool for rapid and non-invasive biodiversity 

monitoring. eDNA density is low in environmental samples, and a capture method, such as 

filtration, is often required to concentrate eDNA for downstream analyses. In this study, six 

treatments, with differing filter types and pore sizes for eDNA capture, were compared for 

their efficiency and accuracy to assess fish community structure with known fish abundance 

and biomass via eDNA metabarcoding. Our results showed that different filters (with the 

exception of 20 μm large-pore filters) were broadly consistent in their DNA capture ability. 

The 0.45 µm filters performed the best in terms of total DNA yield, probability of species 

detection, repeatability within pond and consistency between ponds. However performance of 

0.45 µm filters were only marginally better than for 0.8 µm filters, while filtration time was 

significantly longer. Given this trade-off, the 0.8 µm filter is the optimal pore size of 

membrane filter for turbid, eutrophic and high fish density ponds analysed here. The 0.45 µm 

Sterivex enclosed filters performed reasonably well and are suitable in situations where on-

site filtration is required. Finally, pre-filters are applied only if absolutely essential for 

reducing the filtration time or increasing the throughput volume of the capture filters. In 

summary, we found encouraging similarity in the results obtained from different filtration 

methods, but the optimal pore size of filter or filter type might strongly depend on the water 

type under study. 

 

Keywords: eDNA method development, fish monitoring, pre-filtration, lentic systems 
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Introduction 

The analysis of environmental DNA (eDNA) is a non-invasive genetic method to detect 

the presence of organisms, including cryptic taxa, that takes advantage of intracellular or 

extra-organismal DNA in the environment (Lawson Handley 2015; Thomsen & Willerslev 

2015; Goldberg et al. 2016). Generally, eDNA density is low in environmental samples, and 

a capture method is therefore required to concentrate eDNA for downstream analyses. The 

two main approaches to capture eDNA in aquatic environments are precipitation and 

filtration.  

Capturing eDNA through precipitation entails adding ethanol or isopropanol with sodium 

acetate to water samples (Dejean et al. 2011; Foote et al. 2012; Doi et al. 2017). Samples can 

be preserved quickly and easily in the field using such an approach, but it is only feasible for 

small volumes of water (<30 mL), which could reduce the probability of detection, 

particularly of rare species (Deiner et al. 2015; Eichmiller et al. 2016). Therefore, most recent 

studies have used filtration-based methods, which can process larger volumes of typically 

250 mL to 5 L, or even up to 45 L (Civade et al. 2016). Previous studies have used a wide 

range of filter types (e.g. different membrane materials and pore sizes) and approaches (e.g. 

on-site or in laboratory) to filtration. On-site filtration followed by immediate preservation 

theoretically enhances DNA integrity and is critical for some remote field surveys where 

access to laboratory facilities is not available. Enclosed filters such Sterivex units (Millipore) 

or Nalgene analytical test filter funnels (Thermo Fisher Scientific), in combination with a 

portable peristaltic or hand-driven pump are popular protocols for the capture of eDNA in the 

field (Keskin 2014; Bergman et al. 2016; Wilcox et al. 2016; Spens et al. 2017). However, a 

larger number of water samples can be filtered simultaneously in a laboratory setting, which 

reduces the processing time. Four main types of membrane filter (so-called “open filters”) are 

commonly used in the laboratory set-ups of freshwater studies: (1) 0.45 μm cellulose nitrate 
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(CN) filters (e.g. Goldberg et al. 2011; Pilliod et al. 2013), (2) 0.45 μm nylon filters (e.g. 

Thomsen et al. 2012), (3) 0.7 or 1.5 μm glass fibre (GF) filters (e.g. Wilcox et al. 2013; Miya 

et al. 2015) and (4) 1.2 μm polycarbonate (PC) filters (e.g. Egan et al. 2015). 

The suitability of various pore sizes of filter to capture eDNA may be heavily influenced 

by the heterogeneous nature of aquatic ecosystems. Suspended particulate matter (SPM, e.g. 

organic matter and sediment) can quickly block 0.2 or 0.45 µm filters (Minamoto et al. 2016; 

Shaw et al. 2016), which will severely prolong filtration time and potentially increase 

concentration of PCR inhibitors (Tsai & Olson 1992; McKee et al. 2015). For highly turbid 

water such as ponds or tropical freshwater ecosystems, even 3 μm PC filters are easily 

blocked (Minamoto et al. 2016; Robson et al. 2016). Most previous studies that have 

investigated the impact of different types and pore sizes of filter on DNA quantity, have 

focussed on individual target species using real-time quantitative PCR (qPCR) (e.g. 

Eichmiller et al. 2016; Lacoursiere-Roussel et al. 2016; Minamoto et al. 2016; Robson et al. 

2016). 

Recently, eDNA-based metabarcoding using High-Throughput Sequencing (HTS) has 

emerged as a powerful tool to monitor entire aquatic communities (e.g. Deiner et al. 2016; 

Hänfling et al. 2016; Port et al. 2016; Valentini et al. 2016). To our knowledge, few previous 

studies have investigated if and how the choice filtration method impacts on estimates of fish 

community composition. The preliminary results of Miya et al. (2016) showed that the 

number of detected fish species was significantly higher when using enclosed 0.45 µm 

polyvinylidene difluoride (PVDF) filters compared to 0.7 µm GF filters, although different 

filtration systems and extraction methods were used in each case. Djurhuus et al. (2017) 

found that different filter membrane materials (0.2 µm PC, CN, polyethersulfone “PES”, and 

PVDF) and extraction methods did not affect estimates of species richness and community 

composition across multiple trophic levels. Majaneva et al. (2018) indicated that 0.45 µm 
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MCE filters (described as CN filters in the study) represented the community composition of 

metazoan more consistently than 0.2 µm PES filters, while the effect of using 12 µm filters as 

pre-filters remained ambiguous. 

The aim of the present study was to further investigate the impact of different filters on 

eDNA capture and community diversity estimation through eDNA metabarcoding. 

Specifically, we compared different pore sizes of membrane filter, different types of filter 

(“open filters” and “enclosed filters”), and the impact of pre-filtration. We evaluated the 

effect on filtration time, total eDNA recovered, probability of species detection, repeatability, 

and the relationship between read counts and known fish abundance or biomass in four fish 

ponds with differing assemblages. 

 

Materials and Methods 

Study site and water sampling 

This study was carried out at four artificial stock ponds (E1-E4) at the National Coarse 

Fish Rearing Unit (Nottingham, UK), run by the UK Environment Agency. The size of each 

pond is 5100 m2 (60 m × 85 m) and the depth is 1 ~ 1.5 m. Generally, these ponds are used to 

rear approximately one-year-old common British coarse fish from June to January before 

they are used in stocking programmes for conservation purposes or recreational fishing. All 

fish were measured and weighed before stocking in the ponds on 15th June 2015 and after 

harvesting on 18th January 2016. Fish abundance and biomass at the time of water sampling 

in August 2015 were estimated, assuming that death and growth curves of these fish are 

linear (Figs. S1 & S2, Supporting information). The fish stock information in August 2015 is 

shown in Table 1.  
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Water sampling was carried out on 6th August 2015. The dissolved oxygen (DO) 

concentration was similar between ponds (Mean±SD, 7.9±0.8 mg/L). For each pond, 12 

water samples were collected at evenly distributed points around the shore. A 1 L sterile 

bottle was used to collect water at each point just below the surface, and then the water was 

pooled into a 12.5 L sterile water container. After inverting and shaking the collection 

container, the water was then subsampled with 25 Gosselin 500 mL sterile plastic bottles. All 

samples were stored in cool boxes, transferred to the eDNA laboratory at University of Hull 

(UoH) within 2 hours and refrigerated until filtration.  

 

eDNA capture treatments 

Six filtration-based eDNA capture treatments were used for each pond. These treatments 

were: (1) “0.45MCE”: 0.45 µm mixed cellulose acetate and nitrate (also known as mixed 

cellulose ester or “MCE”) filters, 47 mm diameter (Whatman); (2) “0.8MCE”: 0.8 µm MCE 

filters, 47 mm diameter (Whatman); (3) “1.2MCE”: 1.2 µm MCE filters, 50 mm diameter 

(Whatman); (4) “0.45Sterivex”: 0.45 µm Sterivex-HV PVDF units (Millipore); (5) 

“PF_0.45MCE”: 0.45 µm MCE filters, 47 mm diameter (Whatman) after pre-filtration with 

20 µm qualitative cellulose filters, Grade 4 (Whatman); and (6) “PF”: the pre-filters used in 

treatment 5. Each treatment was replicated five times, filtering 300 mL water each time, 

resulting in a total of 120 replicates. These treatments were used to measure three different 

effects: pore sizes (0.45MCE, 0.8MCE and 1.2MCE), filter types (0.45MCE and 0.45Sterivex) 

and pre-filtration (0.45MCE and PF_0.45MCE) (Fig. 1). 

To reduce cross-contamination, the samples from individual ponds were filtered separately 

in order of pond E1 to E4. For each replicate (apart from the “0.45Sterivex” treatment), 300 

mL water was filtered using Nalgene filtration units (Thermo Fisher Scientific) in 

combination with a vacuum pump (15~20 in. Hg, Pall Corporation). For each pond, the same 
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filtration unit was used for the all five replicates of the same capture treatment. The filtration 

units were cleaned with 10% v/v commercial bleach solution and 5% v/v microsol detergent 

(Anachem, UK), and then rinsed thoroughly with deionised water after each filtration to 

prevent cross-contamination. Filtration blanks (n=5) with 300 mL deionised water were run 

before the first filtration and after every wash run in order to test for possible contamination 

at the filtration stage. For the “0.45Sterivex” treatment, 300 mL water was directly filtered 

with 0.45 µm Sterivex units in combination with a vacuum pump (15~20 in. Hg, Pall 

Corporation). All samples were filtered within 24 hours of collection in a dedicated eDNA 

filtration laboratory at UoH. 

After filtration, all membrane filters were placed into 50 mm sterile petri dishes sealed 

with parafilm, while Sterivex units were closed with inlet and outlet caps. All samples were 

stored in a freezer at -20oC until DNA extraction. DNA extraction was carried out using the 

PowerWater (Sterivex) DNA Isolation Kits (MoBio Laboratories Inc., now Qiagen) 

following the manufacturer’s protocol. Total DNA concentration was quantified using a 

NanoDrop ND-1000 Spectrophotometer (Thermo Fisher Scientific) after extraction. 

Library preparation and sequencing 

Extracted DNA samples were PCR-amplified targeting a 106 bp vertebrate-specific 

fragment of the mitochondrial 12S rRNA region (Riaz et al. 2011) following a one-step 

library preparation protocol (Kozich et al. 2013) with amplification primers that include PCR 

primers, indices and flow cell adapters. Previous studies showed that this fragment has a low 

false negative rate in both marine mesocosm and coastal ecosystem eDNA metabarcoding 

studies of bony fishes (Kelly et al. 2014; Port et al. 2016). We also previously tested this 

fragment in vitro on 22 common freshwater fish species and in situ on three deep lakes in the 

English Lake District, and demonstrated their suitability for eDNA metabarcoding of UK 

lake fish communities (Hänfling et al. 2016).  
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All PCRs were set up in a PCR workstation in our dedicated eDNA laboratory to minimize 

the risk of contamination. All samples (n=120) together with five filtration and extraction 

controls, five no-template PCR controls and five positive PCR controls (the Eastern Happy, 

Astatotilapia calliptera, a cichlid from Lake Malawi, which is not present in the UK) were 

included in the Illumina MiSeq library construction and sequencing (n=135). PCR reactions 

were carried out in 25 μL volumes with the MyTaq HS Red Mix PCR Kit (Bioline) 

containing: 1X Master Mix, 0.5 μM of each tagged primer and 2.5 μL template DNA. Eight-

strip PCR tubes with individually attached lids and mineral oil (Sigma-Aldrich) were used to 

reduce cross-contamination between samples. PCRs were performed on an Applied 

Biosystems Veriti thermal cycler with the following profile: 98 °C for 5 min, 35 cycles of 

98 °C for 10 sec, 58 °C for 20 sec and 72 °C for 30 sec, followed by a final elongation step at 

72 °C for 7 min. Three PCR technical replicates were performed for each sample then pooled 

to minimize bias in individual PCRs. 

PCR products were purified and normalized using the SequalPrep Normalization Plate Kit 

(Invitrogen) and subsequently pooled in equal volume (i.e. 5 μL per sample). The pooled 

library was further purified using the QIAquick Gel Extraction Kit (Qiagen) and resuspended 

in 20 μL elution buffer. The library concentration was then quantified by Qubit v3.0 using the 

dsDNA HS Assay Kit (Thermo Fisher Scientific). The pooled library was adjusted to 2 nM 

and denatured following the Illumina MiSeq library denaturation and dilution guide. Because 

of the low fish diversity in the ponds, the final 10 pM denatured library was mixed with 30% 

PhiX control to improve the diversity of the library. The library was sequenced on an 

Illumina MiSeq platform using the MiSeq reagent kit v2 (2×250 cycles) at the UoH. The 

custom sequencing and index primers were added to the appropriate wells of the MiSeq 

reagent cartridge as described by Kozich et al. (2013). 
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Data analysis 

Bioinformatics analysis 

Raw read data from Illumina MiSeq sequencing have been submitted to NCBI (BioProject: 

PRJNA414952; BioSample accession: SAMN07811461~SAMN07811580; Sequence Read 

Archive accessions: SRR6189420~SRR6189539). Bioinformatics analysis was implemented 

following a custom reproducible metabarcoding pipeline (metaBEAT v0.97.8) with a custom-

made 12S rRNA reference database as described in our previous study (Hänfling et al. 2016). 

The maximum likelihood phylogenetic tree of the all 12S rRNA sequences from the custom 

reference database is shown in Fig. S3 (Supporting information). Sequences for which the 

best BLAST hit had a bit score below 80 or had less than 100% identity to any sequence in 

the curated database were considered non-target sequences. To assure full reproducibility of 

our bioinformatics analysis, the up to date (May 2017) custom reference database and the 

Jupyter notebook for data processing have been deposited in an additional dedicated GitHub 

repository (https://github.com/HullUni-bioinformatics/Li_et_al_2018_eDNA_filtration). 

Criteria for reducing false positives and quality control 

Filtered data were summarized into the number of sequence reads per species (hereon 

referred to as read counts) for downstream analyses (Appendix S1, Supporting information). 

We applied two criteria to reduce the possibility of false positives. (1) The low-frequency 

noise threshold (proportion of positive species read counts of all read counts in the real 

sample) was set to filter some high-quality annotated reads passing the previous filtering 

steps that have high-confidence BLAST matches but may be inaccurate due to potential low-

level contamination during the library construction process (De Barba et al. 2014; Hänfling et 

al. 2016; Port et al. 2016). The low-frequency noise threshold was set to 0.001 in this study 

as determined empirically in Hänfling et al. (2016); therefore, all taxonomic assignments 
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with frequency below this threshold were omitted from further downstream analysis. (2) 

After the low-frequency noise threshold was applied, remaining taxonomic assignments of 

taxa that were not stocked in the ponds (i.e. Salmo trutta, Alburnus alburnus and Gobio gobio) 

were also treated as false positives and excluded. 

Samples were excluded from the analysis because they performed poorly in terms of PCR 

and sequencing depth due to low DNA concentrations. Two samples (T3-1-3 and T2-2-3) 

showed extremely low levels of DNA concentration and failed PCR. One sample (T4-1-3) 

had only slightly reduced DNA concentration but consistently produced poor results during 

PCR which resulted in no read count assigned to fish (Fig. 2; Fig. S4, Supporting 

information). 

Similarity and statistical analyses 

All similarity and statistical analyses were performed in R v3.3.2 (R_Core_Team 2016) 

and graphs were plotted using ggplot2 v2.2.1 (Wickham & Chang 2016).  

To better quantify the heterogeneity between filtration replicates, the Horn similarity index 

was calculated based on species relative abundance using SpadeR v0.1.1 (Chao et al. 2016) 

with the function SimilarityMult. To investigate effects of different capture treatments on fish 

communities, non-metric multidimensional scaling (NMDS) allied with analysis of 

similarities (ANOSIM) were performed using the abundance-based Bray-Curtis dissimilarity 

index with the function metaMDS and anosim respectively in Vegan v2.4-4 (Oksanen et al. 

2017). The treatment with high repeatability should have high mean Horn index and low 

variation in NMDS ordination. The ANOSIM statistic R is based on the difference of mean 

ranks between treatments and within treatments. 

Two-way analysis of variance (ANOVA) was conducted to test the interaction between 

four ponds and six treatments for filtration time, total DNA yield, probability of species 

detection, Horn index and correlation coefficient between read counts and abundance or 
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biomass after square-root or Tukey’s ladder of powers transformation. Kruskal-Wallis one-

way ANOVA with Dunn’s test was conducted to test differences between the capture 

treatments for filtration time and Horn index. ANOVA with Tukey's test was conducted to 

test differences between the capture treatments for total DNA yield. The significance of linear 

correlations between read counts and abundance or biomass was evaluated by calculating the 

Pearson's product-moment correlation coefficient. 

The full R script is available on the GitHub repository (https://github.com/HullUni-

bioinformatics/Li_et_al_2018_eDNA_filtration/tree/master/R_script). 

 

Results 

Filtration time 

The filtration time across all treatments and ponds varied from 3 to 120 min (Fig. 3). 

There were significant effects of “treatment”, “pond”, the “interaction” between ponds and 

treatments across the entire data set (Table 2, Global), and when comparing different 

treatments under specific aims (Table 2). The average filtration time differed considerably 

among the four ponds under the same filtration treatment, suggesting that SPM content varied 

among ponds (Table S1, Supporting information). In relation to the specific comparisons: the 

filtration time decreased on average by 19.88±14.17 min (Mean±SD) when the pore size 

increased from 0.45 to 0.8 µm and by 5.68±5.98 min (Mean±SD) when the pore size 

increased from 0.8 to 1.2 µm. Overall, filtration time significantly decreased with increasing 

pore size, but the pattern was complex since significant interactions between treatments and 

ponds were observed (Table 2, Pore sizes). Individual post hoc tests showed that not all 

pairwise comparisons among pore sizes were significant (e.g. pond E4). Filtration time was 

on average 18.00±6.48 min (Mean±SD) longer using the “0.45Sterivex” compared to the 
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“0.45MCE”. This pattern was also seen in three out of the four ponds when looked at 

individually but none of the post hoc tests within ponds were significant (Fig. 3). Across the 

four ponds, it was possible to filter 300 mL water in around 4 min using pre-filters 

themselves (Fig. 3; Table S1, Supporting information). Filtration time decreased on average 

by 27.00±13.87 min (Mean±SD) when comparing the 0.45 µm filters after pre-filtration 

(“PF_0.45MCE”) to those without pre-filtration (“0.45MCE”); and this significant trend was 

observed in ponds E1 and E3 (Fig. 3A, C). 

 

DNA yield 

The DNA concentration across all treatments and ponds ranged from 1.15 to 119.70 ng/μL 

(Fig. 2). There were significant effects of “treatment”, “pond”, the “interaction” between 

ponds and treatments across the entire data set (Table 2, Global). In relation to the specific 

comparisons: there was no significant effect of different pore sizes of filter (Table 2, Pore 

sizes, P=0.07). Comparing the “0.45Sterivex” and the “0.45MCE”, there were significant 

effects of “treatment” and “pond” (Table 2, Filter types). Individual post hoc tests showed 

that there was no significant difference between using the “0.45Sterivex” and the “0.45MCE” 

treatments from ponds E1 to E3, but the total DNA yield recovered from the “0.45Sterivex” 

was significantly lower than the “0.45MCE” in pond E4 (Fig. 2D). The average DNA yield 

recovered from the pre-filters themselves (“PF”) was the lowest of the six filtration 

treatments (Table S1, Mean±SD, 16.65±9.85 ng/μL, Supporting information). After pre-

filtration, the “PF_0.45MCE” still recovered 73.27±10.56% (Mean±SD) total eDNA; hence 

only 26.73±10.56% (Mean±SD) of the total eDNA remained on the 20 μm pre-filters. There 

were significant effects of “treatment” and “pond” between the “0.45MCE” and the 

“PF_0.45MCE” (Table 2, Pre-filtration). Individual post hoc tests showed that the total DNA 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

yield recovered from the “0.45MCE” was significantly higher than the “PF_0.45MCE” in 

pond E4 only (Fig. 2D). 

 

Probability of species detection  

All eight stocked species (Abramis brama, Barbus barbus, Carassius carassius, Squalius 

cephalus, Leuciscus leuciscus, Rutilus rutilus, Scardinius erythrophthalmus and Tinca tinca) 

were detected in this study (Fig. 4). The rarest species in ponds E1 and E2 was A. brama. 

This species was not detected in pond E2 with any treatment, but it was detected with 

“0.45Sterivex” in pond E1. Rutilus rutilus was not detected using the pre-filters (“PF”) in 

pond E2 (Fig. 4). In ponds E3 and E4, all stocked species were detected by all of the 

treatments (Fig. 4C, D). There were significant effects of “treatment” and “pond” across the 

entire data set, but there was no significant difference of “interaction” between ponds and 

treatments (Table 2, Global). In relation to the specific comparisons: there was no significant 

difference when comparing different filter pore sizes (Table 2, Pore sizes, P=0.16), and 

filtration with and without pre-filters (Table 2, Pre-filtration, P=0.43). The Sterivex units 

(“0.45Sterivex”) performed slightly better than the “0.45MCE” in terms of probability of 

species detection (Table 2, Filter types, P<0.05). The average probability of species detection 

was the lowest using the pre-filters themselves (“PF”) of the six filtration treatments 

(0.64±0.27, Table S1, Supporting information).  

 

Variation between filtration replicates 

Overall, there was considerable variation in species composition among individual 

filtration replicates within ponds (Fig. 5A1, B1, C1, D1; Fig. S5, Supporting information). In 

terms of Horn index (similarity between replicates), there were significant effects of 
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“treatment”, “pond”, the “interaction” between ponds and treatments across the entire data set 

(Table 2, Global), and when comparing different treatments under specific aims (Table 2). 

The NMDS showed a high degree of overlap between the six capture treatments across four 

ponds (Fig. 5A2, B2, C2, D2) indicating that different filtration treatments yielded broadly 

similar community composition estimates. Notable exceptions to this pattern were the pre-

filters (“PF”) and in some ponds (e.g. ponds E1 & E2) “PF_0.45MCE”, where individual 

replicates were more widely scattered and often outside the ellipses of other treatments. In the 

ANOSIM test, the average values of the R statistic in global tests with all treatments were 

low (Table S2, Mean±SD, 0.15±0.03, Supporting information), which showed that there was 

no obvious difference between treatments; and the P values suggesting that the variation was 

attributed to filtration replicates instead of treatments (Table S2, Mean±SD, P=0.03±0.02, 

Supporting information).  

In relation to the specific comparisons: overall, Horn index significantly decreased with 

increasing pore size, but the pattern was complex since significant interactions between 

treatments and ponds were observed (Table 2, Pore sizes). Individual post hoc tests showed 

that not all pairwise comparisons among pore sizes were significant (e.g. pond E2). The 

NMDS analysis showed that there was only clear discrimination between the “0.45MCE” and 

the “0.8MCE” in pond E1 (Fig. 5A2; Table S2, ANOSIM: R=0.52, P=0.01, Supporting 

information). There was greater variation among the “0.45Sterivex” replicates compared to 

the “0.45MCE” replicates (Fig. 5). The community similarity of the “0.45Sterivex” was 

significantly lower than the “0.45MCE” across four ponds (Table 2, Filter types; Fig. 5A1, 

B1, C1, D1). The NMDS ordination showed that significant difference was observed between 

the “0.45Sterivex” and the “0.45MCE” in ponds E3 (Fig. 5C2; Table S2, ANOSIM: R=0.64, 

P=0.02, Supporting information) and E4 (Fig. 5D2; Table S2, ANOSIM: R=0.30, P=0.02, 

Supporting information). Greater variance between replicates was observed for the pre-filters 
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(“PF”) themselves compared to other treatments (Fig. 5). Repeatability was similar for the 

0.45 µm filters when using pre-filters (“PF_0.45MCE”) and without using pre-filters 

(“0.45MCE”), except in pond E1 where the Horn index was significantly lower for 

“PF_0.45MCE” than “0.45MCE” (Fig. 5A1). The NMDS ordination showed that there was 

no significant difference between the “PF_0.45MCE” and the “0.45MCE” across four ponds 

(Fig. 5A2, B2, C2, D2; Table S2, Mean±SD, ANOSIM: R=0.07±0.06, P=0.26±0.12, 

Supporting information). 

 

Correlations between read counts and fish abundance or biomass 

There were consistent, positive correlations between average read counts of five replicates 

and fish abundance or biomass across the six treatments and four ponds (Fig. 6; Fig. S6, 

Supporting information). There was no significant effect of “treatment”, or “interaction” 

between ponds and treatments, on correlations between read counts and abundance or 

biomass across the entire data set (Table 2, Global). In relation to the specific comparisons: 

overall, there were significant effects of different pore sizes of filter (Table 2, Pore sizes). 

Individual post hoc tests showed that a significant difference in correlations between read 

counts and abundance or biomass was only observed between “0.45MCE” and “1.2MCE” 

treatments, and the 1.2 µm MCE filters performed better than 0.45 µm MCE filters. There 

was no significant effect on correlations between read counts and abundance or biomass 

between “0.45Sterivex” and “0.45MCE” treatments (Table 2, Filter types), and filtration with 

and without pre-filtration (Table 2, Pre-filtration). 
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Discussion 

Optimal pore size of membrane filter 

Turner et al. (2014) previously determined that aqueous eDNA particles from common 

carp (Cyprinus carpio) ranged between < 0.2 and > 180 µm and therefore recommended 0.2 

µm pore size filters for optimal capture of common carp eDNA. In a pilot study, we observed 

that this pore size of filter quickly led to clogging; therefore we compared three pore sizes 

(0.45, 0.8 and 1.2 µm) of membrane filter. 

Our study demonstrated that the filter pore size had considerable impact on filtration time. 

When changing from 0.45 to 0.8 µm filters, on average, 36% filtration time was saved, 

whereas only 15% filtration time was saved increasing pore size from 0.8 to 1.2 µm. This 

result supports previous studies (Turner et al. 2014; Eichmiller et al. 2016; Minamoto et al. 

2016) indicating that the smaller pore size of filters were more likely to clog and increase 

filtration time. However, different pore sizes did not affect the amount of total eDNA 

recovered and probability of species detection. The similarity among filtration replicates 

decreased with increasing pore size; and the repeatability among filtration replicates using the 

0.45 µm MCE filters was the highest compared to the other pore sizes of filter. This in turns 

indicates that stochastic sampling effects can be minimised by using smaller pore size of 

filters. After pooling that data from all five replicates consistently positive relationships were 

found between read counts and fish abundance or biomass, although correlations were not 

always statistically significant. The 0.8 µm and 1.2 µm MCE filters performed better than 

0.45 µm MCE filters in terms of correlations between read counts and fish abundance or 

biomass. In contrast, Eichmiller et al. (2016) found that different pore sizes (0.2, 0.6, 1.0 and 

5.0 μm) of PC filter affected the slope of the C. carpio biomass/eDNA copies relationship; 

and 0.2~0.6 μm filters were optimal for biomass quantification in the laboratory. Turner et al. 
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(2014) showed that PC filters have relatively uniform sized pores, in contrast, the MCE filters 

are less uniform and more likely to retain particles by entrapment. The structural difference 

between PC filters and MCE filters could explain why our results are different from 

Eichmiller et al. (2016). Previous studies have also demonstrated that filter materials can also 

drastically affect the recovery of eDNA (Liang & Keeley 2013; Renshaw et al. 2015; Hinlo et 

al. 2017). The other potential reason for difference between studies could be that previous 

studies were based on target species detection via qPCR assays, comparing absolute DNA 

concentrations across samples, as opposed to metabarcoding of the whole community 

comparing relative sequencing read counts in the current study. In support of this, Djurhuus 

et al. (2017) found that different filter materials did not result in different richness and 

community composition based on metabarcoding. 

The 0.45 µm MCE filters performed the best among the six filtration treatments in terms 

of DNA yield, repeatability within pond and consistency between ponds. However, filtration 

time was significantly longer for the 0.45 µm MCE filters than the 0.8 µm MCE filters. The 

correlations between read counts and fish abundance or biomass recovered by the 0.8 µm 

MCE filters were slightly better than those of the 0.45 µm MCE filters even though there was 

no significant difference between the treatments. Therefore, the 0.8 µm MCE filters appear to 

provide a reasonable balance between filtration time and quantification efficacy in this study 

and may be optimal in turbid, eutrophic, high fish density water bodies, whereas 0.45 µm 

MCE filters may be more suitable to clearer waters (Fig. 1).  

 

Performance of enclosed (Sterivex) filters  

Previous studies showed that filtration using enclosed Sterivex units is an effective 

protocol for capturing target species DNA with qPCR assays (Keskin 2014; Bergman et al. 

2016; Spens et al. 2017). To our knowledge, Spens et al. (2017) is the only published study 
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comparing Sterivex units with membrane filters using qPCR. Here, we directly compared the 

performance of MCE filters and Sterivex units of the same pore size via metabarcoding. 

On average, filtration time using the Sterivex units increased 18 min per sample compared 

to using 0.45 µm MCE filters. This difference is not due to vacuum pumps as the same pump 

was used for both filter types. However, Spens et al. (2017) observed that 1 L clear lake 

water can be filtered through 0.22 µm Sterivex units in around 10 min using 50 mL syringes 

comparing to 0.45 µm MCE filters (described as CN filters in the study) in 15~30 min using 

a vacuum pump. To minimize filtration time, we therefore recommend that Sterivex units are 

used together with prepacked sterile syringes in situations where on-site filtration is required 

(Fig. 1). With respect to DNA yield, the 0.45 µm Sterivex filters recovered slightly less DNA 

than the 0.45 µm MCE filters. The Horn index and NMDS ordination showed there was a 

greater variation among the 0.45 µm Sterivex replicates compared to the 0.45 µm MCE 

replicates. However, the correlations between read counts and fish biomass or abundance 

were not significantly different between the treatments when all data were pooled. Therefore, 

0.45 µm Sterivex units can be considered an efficient eDNA capture method for 

metabarcoding. 

Efficiency and impact of pre-filtration 

The water from Calverton fish ponds is turbid and eutrophic, with high levels of algae. 

Our pilot study showed that a small amount of water (i.e. 250 mL) could be filtered through 

1.2 µm filters before clogging. This is considerably less than previous metabarcoding studies 

in less eutrophic lakes, in which at least 1 L water was filtered (Hänfling et al. 2016; Port et 

al. 2016) and reduced sample volumes could potentially impact rare species detection. Pre-

filtration could potentially help to prevent clogging, substantially reduce filtration time, and 

reduce the capture of unwanted SPM and PCR inhibitors. We therefore investigated the 
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impact of pre-filtration by comparing results from 0.45 µm MCE filters with and without 

passing through 20 µm pre-filters, as well as the analysing pre-filters themselves. 

Across the four ponds, it was possible to filter 300 mL water in around 4 min using the 

pre-filters themselves. The pre-filtering step reduced the filtration time through the 0.45 μm 

MCE filters by approximately 50%, resulting in a considerable overall time saving per 

sample. This could be an important consideration when eutrophic habitat or water with high 

sediment content is sampled. After pre-filtration, 73.27% total eDNA was recovered on the 

0.45 μm MCE filters (with a corresponding 26.73% total eDNA remained on pre-filters). Pre-

filtration followed by capture onto 0.45 μm MCE filters did not result in significantly 

different probability of species detection, repeatability between filtration replicates, and 

correlations between read counts and fish biomass or abundance when compared to other 

treatments. However, Majaneva et al. (2018) demonstrated that pre-filtration (12 µm pre-

filters with 0.45 µm filters), could potentially reduce the number of detected metazoan taxa, 

although it recovered higher diversity index values and more consistent community 

composition. 

In terms of the pre-filters themselves, the overall probability of species detection 

(0.64±0.27) was lower than other membrane filters, and greater variance between replicates 

was observed compared to other treatments. Similar results were found by Robson et al. 

(2016), who showed that 2 L water samples can be filtered in less than 3 min using 20 μm 

filters, but a 0.57 probability of single species detection was achieved compared to 1.00 

probability using 3 µm PC filters.  

Our results indicate that pre-filtration with 20 μm filters could prevent SPM from clogging 

finer filters without affecting metabarcoding results but that the pre-filters themselves are not 

suitable for metabarcoding due to the potential of reduced total DNA yield, probability of 

species detection and repeatability. Despite the advantages of pre-filtration demonstrated here, 
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it should be noted that there is a drawback of pre-filtration in terms of more handling, which 

could increase the opportunity for contamination (Turner et al. 2014). Thus, we recommend 

pre-filters are applied only if absolutely essential for reducing the filtration time or increasing 

the throughput volume of the capture filters (Fig. 1). 

 

Conclusion 

This study demonstrate that the DNA yield, probability of species detection, and 

correlations between abundance/biomass and read counts are encouragingly comparable 

between different filter types (0.45 MCE filters and 0.45 Sterivex units) and pore sizes (0.45, 

0.8 and 1.2 μm). Therefore, eDNA metabarcoding results seem quite robust to the choice of 

the filtration method when a sufficient number of replicates is carried out. We note, however, 

that the suitability of various pore sizes of filter to capture eDNA is likely to be heavily 

influenced by the heterogeneous nature of water bodies. For turbid, eutrophic, high fish 

density ponds, such as those studied here, 0.8 μm MCE filters provide the optimal trade-off 

between rapid filtration time and probability of species detection, but smaller pore sizes of 

filter may be more suitable for clearer, low species density conditions. Further study of the 

impact of heterogeneity (in terms of SPM, biochemical oxygen demand “BOD”, chemical 

oxygen demand “COD”, dissolved oxygen “DO”, pH, water colour etc.) between water 

bodies on eDNA capture is required. Finally, we report high variation among filtration 

replicates, which is consistent with Lanzén et al. (2017) who indicated that technical 

replicates of DNA extraction can improve diversity and compositional dissimilarity. Spatial 

heterogeneity of eDNA within water bodies has also been reported in several studies (e.g. 

Jerde et al. 2011; Pilliod et al. 2013; Civade et al. 2016; Hänfling et al. 2016). Future studies, 

for example incorporating species occupancy models for imperfect species detection (Pilliod 
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et al. 2013; Schmidt et al. 2013; Hänfling et al. 2016; Valentini et al. 2016), are needed to 

further investigate the multiple opportunities for heterogeneity encountered in eDNA studies. 
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Figure Captions 

Figure 1: Flow chart illustrating selection of eDNA capture, preservation and extraction 
based on the filtration equipment and aquatic ecosystems of study. “MCE”: mixed cellulose 
acetate and nitrate. Note: Pre-filters are applied only if it substantially reducing the filtration 
time or increasing the throughput volume of the capture filters. ‘†’ refers to this method was 
recommended by Spens et al. (2017). 

Figure 2: DNA yield recovered from six eDNA capture treatments from four ponds (A-D 
correspond to ponds E1-E4 respectively). Five replicates under each treatment. Treatments 
that differ significantly (P<0.05) are indicated by the different letters above the bars. 
“0.45MCE”: 0.45 µm mixed cellulose acetate and nitrate (MCE) filters; “0.8MCE”: 0.8 µm 
MCE filters; “1.2MCE”: 1.2 µm MCE filters; “0.45Sterivex”: 0.45 µm Sterivex-HV enclosed 
units; “PF_0.45MCE”: 0.45 µm MCE filters after 20 µm qualitative cellulose pre-filters, and 
“PF”: 20 µm qualitative cellulose pre-filters. Note: ‘Diamonds ◊’ show average values and 
the white dots represent outliers, identified in ‘Data analysis’ section, are excluded 
downstream analysis. 

Figure 3: Filtration time of six eDNA capture treatments from four ponds (A-D correspond 
to ponds E1-E4 respectively). Five replicates under each treatment. Treatments that differ 
significantly (P<0.05) are indicated by the different letters in boxplots. Abbreviations of 
treatments are the same as in Fig. 2. Note: ‘Diamonds ◊’ show average values and the white 
dots represent outliers, identified in ‘Data analysis’ section, are excluded downstream 
analysis. 

Figure 4: Species composition of averaged read counts (number of replicates = 5) using six 
eDNA capture treatments of eDNA from four ponds (A-D correspond to ponds E1-E4 
respectively). Species three letter codes are given in Table 1 and abbreviations of treatments 
are the same as in Fig. 2. ‘Bio’ and ‘Abu’ refer to species composition of fish biomass or 
abundance calculated based on Table 1, respectively. Note: Replicates identified as outliers 
are excluded. 

Figure 5: Pairwise Horn similarity index (A1-D1) and non-metric multidimensional scaling 
(NMDS) (A2-D2) based on six eDNA capture treatments from four ponds (A-D correspond 
to ponds E1-E4 respectively). ‘Among’ refers to all filtration replicates among treatments 
within pond (A1-D1). Treatments that differ significantly (P<0.05) are indicated by the 
different letters in boxplots (A1-D1). The ellipses indicate the 50% standard error of each 
capture method in order to visualise the individual data points (which are not visible at 95%) 
(A2-D2). Species three letter codes are given in Table 1 and abbreviations of treatments are 
the same as in Fig. 2. Note: Five replicates under each treatment and replicates identified as 
outliers are excluded. 

Figure 6: Correlations between averaged read counts (number of replicates = 5) and fish 
abundance using six eDNA capture treatments from four ponds (A-D correspond to ponds 
E1-E4 respectively). Abbreviations of treatments are the same as in Fig. 2. Note: Replicates 
identified as outliers are excluded.  
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Table 1: Fish stock information of four experiment ponds at the National Coarse Fish 
Rearing Unit. 

Pond 
Species August 2015 

Scientific name Common name Code Abundance Biomass(kg) 

E1 Rutilus rutilus Roach ROA 33515 199.7 

E1 Barbus barbus Barbel BAR 9695 118.8 

E1 Squalius cephalus Chub CHU 14943 445.2 

E1 Abramis brama Common bream BRE 500 7.1 

E1 Tinca tinca Tench TEN 944 10.9 

E1 Carassius carassius Crucian Carp CAR 489 10.2 

E2 Rutilus rutilus Roach ROA 4730 52.4 

E2 Leuciscus leuciscus Dace DAC 34729 287.0 

E2 Barbus barbus Barbel BAR 9691 295.6 

E2 Abramis brama Common bream BRE 487 4.7 

E2 Carassius carassius Crucian Carp CAR 4910 86.8 

E3 Squalius cephalus Chub CHU 18967 542.6 

E3 Rutilus rutilus Roach ROA 30156 321.2 

E3 Carassius carassius Crucian Carp CAR 3474 58.6 

E3 Tinca tinca Tench TEN 4773 58.2 

E4 Leuciscus leuciscus Dace DAC 29322 248.0 

E4 Barbus barbus Barbel BAR 9508 268.7 

E4 Scardinius erythrophthalmus Rudd RUD 8334 71.1 

E4 Abramis brama Common bream BRE 4962 52.6 

E4 Carassius carassius Crucian Carp CAR 199 17.6 

E4 Tinca tinca Tench TEN 4763 43.5 

Note: Full scientific, common names and three letter codes used in figures are given. 
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Table 2: Two-way analysis of variance (ANOVA) results for filtration time, total DNA yield, 
species detection probability, correlation with abundance, and correlation with biomass using 
six eDNA capture treatments across four ponds (E1-E4).  

Evaluation 
criterion 

Group Treatment Pond Interaction 

Filtration 
time (min) 

 

Global F(5,93)=234.96*** F(3,93)=288.44*** F(15,93)=14.35*** 

Pore sizes F(2,46)=47.88*** F(3,46)=173.90*** F(6,46)=4.31** 

Filter types F(1,31)=12.43** F(3,31)=61.92*** F(3,31)=5.11** 

Pre-filtration F(1,32)=123.11*** F(3,32)=169.41*** F(3,32)=4.12* 

Total DNA 
yield 
(ng/μL) 

 

Global F(5,93)=42.07*** F(3,93)=24.06*** F(15,93)=2.96*** 

Pore sizes F(2,46)=2.82; P=0.07 F(3,46)=17.61*** F(6,46)=3.46** 

Filter types F(1,31)=34.00*** F(3,31)=8.63*** F(3,31)=1.09; P=0.36 

Pre-filtration F(1,32)=8.57** F(3,32)=4.49** F(3,32)=1.43; P=0.25 

Probability 
of species 
detection  

Global F(5,93)=4.80*** F(3,93)=94.28*** F(15,93)=1.48; P=0.13 

Pore sizes F(2,46)=1.89; P=0.16 F(3,46)=48.79*** F(6,46)=1.13; P=0.36 

Filter types F(1,31)=4.90* F(3,31)=28.27*** F(3,31)=2.39; P=0.09 

Pre-filtration F(1,32)=0.65; P=0.43 F(3,32)=32.54*** F(3,32)=2.85; P=0.05 

Horn index 

 

Global F(5,204)=14.09*** F(3,204)=34.67*** F(15,204)=6.55*** 

Pore sizes F(2,100)=10.33*** F(3,100)=30.29*** F(6,100)=9.31*** 

Filter types F(1,68)=53.63*** F(3,68)=5.18** F(3,68)=4.29** 

Pre-filtration F(1,72)=34.96*** F(3,72)=24.86*** F(3,72)=24.29** 

Correlation 
with 
abundance 

 

Global F(5,93)=1.58; P=0.17 F(3,93)=4.48* F(15,93)=1.05; P=0.41 

Pore sizes F(2,46)=3.22* F(3,46)=3.73* F(6,46)=1.94; P=0.09 

Filter types F(1,31)=0.05; P=0.83 F(3,31)=1.70; P=0.19 F(3,31)=0.58; P=0.63 

Pre-filtration F(1,32)=0.0025; P=0.96 F(3,32)=5.79** F(3,32)=0.69; P=0.56 

Correlation 
with 
biomass 

 

Global F(5,93)=2.30; P=0.051 F(3,93)=8.85*** F(15,93)=1.51; P=0.11 

Pore sizes F(2,46)=5.80** F(3,46)=12.31*** F(6,46)=2.61* 

Filter types F(1,31)=0.005; P=0.95 F(3,31)=2.93* F(3,31)=0.81; P=0.50 

Pre-filtration F(1,32)=0.44; P=0.51 F(3,32)=7.53*** F(3,32)=0.21; P=0.89 

Note: The compared treatments in three different groups are: pore sizes (0.45MCE, 0.8MCE 
and 1.2MCE), filter types (0.45MCE and 0.45Sterivex) and pre-filtration (0.45MCE and 
PF_0.45MCE). Replicates identified as outliers are excluded. Significant codes: 0 ‘***’ 
0.001 ‘**’ 0.01 ‘*’ 0.05. 
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