Skip to main content

Research Repository

Advanced Search

Microwave assisted Pre-treatment of lignocellulosic residues for better performance as solid fuels in fluidised bed technologies

People Involved

Profile image of Dr Vicky Skoulou

Dr Vicky Skoulou V.Skoulou@hull.ac.uk
Graduate Research Director (GRD) of School of Engineering ; Senior Lecturer (Assoc. Prof.) in Chemical Engineering-Bioenergy ; PI of the B3: Biomass Waste- BioenergH2- Biochars Challenge Group of PGRs and PDRAs

Overview of biomass conversion to biofuels (2021)
Book Chapter
Cheah, K. W., Taylor, M. J., Evans, G., Samson, A., & Skoulou, V. (2022). Overview of biomass conversion to biofuels. In S. Yusup, & N. A. Rashidi (Eds.), Value chain of Biofuels (1-48). Elsevier. https://doi.org/10.1016/B978-0-12-824388-6.00007-5

This chapter introduces the main biomass conversion routes to biofuels currently available in industry. It begins with a general comparison between first- and second-generation lignocellulosic biomass feedstocks, and the lessons learned by utilizing... Read More about Overview of biomass conversion to biofuels.

Recent advances in the catalytic deoxygenation of plant oils and prototypical fatty acid models compounds: Catalysis, process, and kinetics (2021)
Journal Article
Cheah, K. W., Yusup, S., Loy, A. C. M., How, B. S., Skoulou, V., & Taylor, M. J. (2021). Recent advances in the catalytic deoxygenation of plant oils and prototypical fatty acid models compounds: Catalysis, process, and kinetics. Molecular Catalysis, Article 111469. https://doi.org/10.1016/j.mcat.2021.111469

With the inevitable human innate aspirations for better urban mobility and sustainable economic development, bio-based transportation fuels are projected to play an essential role in the foreseeable automotive transportation sector. Agricultural-base... Read More about Recent advances in the catalytic deoxygenation of plant oils and prototypical fatty acid models compounds: Catalysis, process, and kinetics.

Particle swarm optimization and global sensitivity analysis for catalytic co-pyrolysis of Chlorella vulgaris and plastic waste mixtures (2021)
Journal Article
Majid, M., Chin, B. L. F., Jawad, Z. A., Chai, Y. H., Lam, M. K., Yusup, S., & Cheah, K. W. (2021). Particle swarm optimization and global sensitivity analysis for catalytic co-pyrolysis of Chlorella vulgaris and plastic waste mixtures. Bioresource technology : biomass, bioenergy, biowastes, conversion technologies, biotransformations, production technologies, 329, Article 124874. https://doi.org/10.1016/j.biortech.2021.124874

This study investigated on the co-pyrolysis of microalgae Chlorella vulgaris and high-density polyethylene (HDPE) waste mixtures which was performed with three types of catalysts, namely limestone (LS), HZSM-5 zeolite, and novel bi-functional LS/HZSM... Read More about Particle swarm optimization and global sensitivity analysis for catalytic co-pyrolysis of Chlorella vulgaris and plastic waste mixtures.