Skip to main content

Research Repository

Advanced Search

Outputs (7)

The influence of musculoskeletal forces on the growth of the prenatal cortex in the ilium: a finite element study (2020)
Journal Article
Watson, P. J., Fagan, M. J., & Dobson, C. A. (in press). The influence of musculoskeletal forces on the growth of the prenatal cortex in the ilium: a finite element study. Computer methods in biomechanics and biomedical engineering, https://doi.org/10.1080/10255842.2020.1777546

Remodelling and adaptation of bone within the pelvis is believed to be influenced by the mechanical strains generated during locomotion. Variation in the cortical bone thickness observed in the prenatal ilium has been linked to the musculoskeletal lo... Read More about The influence of musculoskeletal forces on the growth of the prenatal cortex in the ilium: a finite element study.

An assessment of the role of the falx cerebri and tentorium cerebelli in the cranium of the cat (Felis silvestris catus) (2018)
Journal Article
Sellés de Lucas, V., Dutel, H., Evans, S. E., Gröning, F., Sharp, A. C., Watson, P. J., & Fagan, M. J. (2018). An assessment of the role of the falx cerebri and tentorium cerebelli in the cranium of the cat (Felis silvestris catus). Interface, 15(147), Article 20180278. https://doi.org/10.1098/rsif.2018.0278

© 2018 The Author(s). The falx cerebri and the tentorium cerebelli are two projections of the dura mater in the cranial cavity which ossify to varying degrees in some mammalian species. The idea that the ossification of these structures may be necess... Read More about An assessment of the role of the falx cerebri and tentorium cerebelli in the cranium of the cat (Felis silvestris catus).

Mechanical adaptation of trabecular bone morphology in the mammalian mandible (2018)
Journal Article
Watson, P. J., Fitton, L. C., Meloro, C., Fagan, M. J., & Gröning, F. (2018). Mechanical adaptation of trabecular bone morphology in the mammalian mandible. Scientific reports, 8(1), Article 7277. https://doi.org/10.1038/s41598-018-25597-0

Alveolar bone, together with the underlying trabecular bone, fulfils an important role in providing structural support against masticatory forces. Diseases such as osteoporosis or periodontitis cause alveolar bone resorption which weakens this struct... Read More about Mechanical adaptation of trabecular bone morphology in the mammalian mandible.

A biomechanical analysis of prognathous and orthognathous insect head capsules: Evidence for a many to one mapping of ridge strain to head strain (2018)
Journal Article
Blanke, A., Pinheiro, M., Watson, P. J., & Fagan, M. J. (2018). A biomechanical analysis of prognathous and orthognathous insect head capsules: Evidence for a many to one mapping of ridge strain to head strain. Journal of evolutionary biology, 31(5), 665-674. https://doi.org/10.1111/jeb.13251

Insect head shapes are remarkably variable but the influences of these changes on biomechanical performance are unclear. Among “basal” winged insects, such as dragonflies, mayflies, earwigs, and stoneflies, some of the most prominent anatomical chang... Read More about A biomechanical analysis of prognathous and orthognathous insect head capsules: Evidence for a many to one mapping of ridge strain to head strain.

Inclusion of periodontal ligament fibres in mandibular finite element models leads to an increase in alveolar bone strains (2017)
Journal Article
McCormack, S. W., Witzel, U., Watson, P. J., Fagan, M. J., & Gröning, F. (2017). Inclusion of periodontal ligament fibres in mandibular finite element models leads to an increase in alveolar bone strains. PLoS ONE, 12(11), e0188707. https://doi.org/10.1371/journal.pone.0188707

Alveolar bone remodelling is vital for the success of dental implants and orthodontic treatments. However, the underlying biomechanical mechanisms, in particular the function of the periodontal ligament (PDL) in bone loading and remodelling, are not... Read More about Inclusion of periodontal ligament fibres in mandibular finite element models leads to an increase in alveolar bone strains.

The effect of boundary constraints on finite element modelling of the human pelvis (2017)
Journal Article
Watson, P., Dostanpor, A., Fagan, M. J., & Dobson, C. A. (2017). The effect of boundary constraints on finite element modelling of the human pelvis. Medical engineering & physics, 43, 48-57. https://doi.org/10.1016/j.medengphy.2017.02.001

The use of finite element analysis (FEA) to investigate the biomechanics of anatomical systems critically relies on the specification of physiologically representative boundary conditions. The biomechanics of the pelvis has been the specific focus of... Read More about The effect of boundary constraints on finite element modelling of the human pelvis.

Computational biomechanics changes our view on insect head evolution (2017)
Journal Article
Blanke, A., Watson, P. J., Holbrey, R., & Fagan, M. J. (2017). Computational biomechanics changes our view on insect head evolution. Proceedings of the Royal Society B: Biological Sciences, 284(1848), Article 20162412. https://doi.org/10.1098/rspb.2016.2412

© 2017 The Author(s) Published by the Royal Society. All rights reserved. Despite large-scale molecular attempts, the relationships of the basal winged insect lineages dragonflies, mayflies and neopterans, are still unresolved. Other data sources, su... Read More about Computational biomechanics changes our view on insect head evolution.