Skip to main content

Research Repository

Advanced Search

Outputs (7)

Explainable AI for Intelligent Decision Support in Operations & Maintenance of Wind Turbines (2020)
Presentation / Conference Contribution
Chatterjee, J. (2020, August). Explainable AI for Intelligent Decision Support in Operations & Maintenance of Wind Turbines. Presented at 1st Doctoral Consortium at the European Conference on Artificial Intelligence (DC-ECAI 2020), Online

As global efforts in transitioning to sustainable energy sources rise, wind energy has become a leading renewable energy resource. However, turbines are complex engineering systems and rely on effective operations & maintenance (O&M) to prevent catas... Read More about Explainable AI for Intelligent Decision Support in Operations & Maintenance of Wind Turbines.

Computational Intelligence for Safety Assurance of Cooperative Systems of Systems (2020)
Journal Article
Kabir, S., & Papadopoulos, Y. (2020). Computational Intelligence for Safety Assurance of Cooperative Systems of Systems. Computer, 53(12), 24-34. https://doi.org/10.1109/MC.2020.3014604

Cooperative systems of systems (CSoSs) form a new technological frontier for their enormous economic and societal potentials in various domains. This article presents a novel framework for dynamic safety assurance of CSoSs that integrates design time... Read More about Computational Intelligence for Safety Assurance of Cooperative Systems of Systems.

Deep reinforcement learning for maintenance planning of offshore vessel transfer (2020)
Presentation / Conference Contribution
Chatterjee, J., & Dethlefs, N. (2020, October). Deep reinforcement learning for maintenance planning of offshore vessel transfer. Presented at 4th International Conference on Renewable Energies Offshore (RENEW 2020), Lisbon, Portugal

Offshore wind farm operators need to make short-term decisions on planning vessel transfers to turbines for preventive or corrective maintenance. These decisions can play a pivotal role in ensuring maintenance actions are carried out in a timely and... Read More about Deep reinforcement learning for maintenance planning of offshore vessel transfer.

A Dual Transformer Model for Intelligent Decision Support for Maintenance of Wind Turbines (2020)
Presentation / Conference Contribution
Chatterjee, J., & Dethlefs, N. (2020, July). A Dual Transformer Model for Intelligent Decision Support for Maintenance of Wind Turbines. Presented at 2020 International Joint Conference on Neural Networks (IJCNN), Glasgow, UK

© 2020 IEEE. Wind energy is one of the fastest-growing sustainable energy sources in the world but relies crucially on efficient and effective operations and maintenance to generate sufficient amounts of energy and reduce downtime of wind turbines an... Read More about A Dual Transformer Model for Intelligent Decision Support for Maintenance of Wind Turbines.

The Promise of Causal Reasoning in Reliable Decision Support for Wind Turbines (2020)
Presentation / Conference Contribution
Chatterjee, J., & Dethlefs, N. (2020, August). The Promise of Causal Reasoning in Reliable Decision Support for Wind Turbines. Paper presented at Fragile Earth: Data Science for a Sustainable Planet. KDD 2020, Virtual Conference

The global pursuit towards sustainable development is leading to increased adaptation of renewable energy sources. Wind turbines are promising sources of clean energy, but regularly suffer from failures and down-times, primarily due to the complex en... Read More about The Promise of Causal Reasoning in Reliable Decision Support for Wind Turbines.

A Hybrid Modular Approach for Dynamic Fault Tree Analysis (2020)
Journal Article
Kabir, S., Aslansefat, K., Sorokos, I., Papadopoulos, Y., & Konur, S. (2020). A Hybrid Modular Approach for Dynamic Fault Tree Analysis. IEEE Access, 8, 97175-97188. https://doi.org/10.1109/ACCESS.2020.2996643

Over the years, several approaches have been developed for the quantitative analysis of dynamic fault trees (DFTs). These approaches have strong theoretical and mathematical foundations; however, they appear to suffer from the state-space explosion a... Read More about A Hybrid Modular Approach for Dynamic Fault Tree Analysis.

Deep learning with knowledge transfer for explainable anomaly prediction in wind turbines (2020)
Journal Article
Chatterjee, J., & Dethlefs, N. (2020). Deep learning with knowledge transfer for explainable anomaly prediction in wind turbines. Wind energy, 23(8), 1693-1710. https://doi.org/10.1002/we.2510

The last decade has witnessed an increased interest in applying machine learning techniques to predict faults and anomalies in the operation of wind turbines. These efforts have lately been dominated by deep learning techniques which, as in other fie... Read More about Deep learning with knowledge transfer for explainable anomaly prediction in wind turbines.