Skip to main content

Research Repository

Advanced Search

Outputs (2)

Asymmetric effects of a modelled tidal turbine on the flow and seabed (2020)
Journal Article
Ramírez -Mendoza, R., Murdoch, L., Jordan, L. B., Amoudry, L. O., McLelland, S., Cooke, R. D., Thorne, P., Simmons, S. M., Parsons, D., & Vezza, M. (2020). Asymmetric effects of a modelled tidal turbine on the flow and seabed. Renewable energy, 159, 238-249. https://doi.org/10.1016/j.renene.2020.05.133

The extraction of power from the flow of water has become an important potential source of clean energy. In spite of significant interest in the interaction between energy extraction devices and water currents, comparatively little work has focused o... Read More about Asymmetric effects of a modelled tidal turbine on the flow and seabed.

Influence of Coriolis force upon bottom boundary layers in a large‐scale gravity current experiment: Implications for evolution of sinuous deep‐water channel systems (2020)
Journal Article
Davarpanah Jazi, S., Wells, M., Peakall, J., Dorrell, R., Thomas, R., Keevil, G., Darby, S., Sommeria, J., Viboud, S., & Valran, T. (2020). Influence of Coriolis force upon bottom boundary layers in a large‐scale gravity current experiment: Implications for evolution of sinuous deep‐water channel systems. Journal of Geophysical Research: Oceans, 125(3), https://doi.org/10.1029/2019JC015284

Oceanic density currents in many deep-water channels are strongly influenced by the Coriolis force. The dynamics of the bottom-boundary layer in large geostrophic flows, and low Rossby number turbidity currents, are very important for determining the... Read More about Influence of Coriolis force upon bottom boundary layers in a large‐scale gravity current experiment: Implications for evolution of sinuous deep‐water channel systems.