Skip to main content

Research Repository

Advanced Search

Computational biomechanical modelling of the rabbit cranium during mastication (2021)
Journal Article
Watson, P. J., Sharp, A. C., Choudhary, T., Fagan, M. J., Dutel, H., Evans, S. E., & Gröning, F. (2021). Computational biomechanical modelling of the rabbit cranium during mastication. Scientific reports, 11(1), https://doi.org/10.1038/s41598-021-92558-5

Although a functional relationship between bone structure and mastication has been shown in some regions of the rabbit skull, the biomechanics of the whole cranium during mastication have yet to be fully explored. In terms of cranial biomechanics, th... Read More about Computational biomechanical modelling of the rabbit cranium during mastication.

Regional patterning in tail vertebral form and function in chameleons (Chamaeleo calyptratus) (2021)
Journal Article
Luger, A. M., Watson, P. J., Dutel, H., Fagan, M. J., Van Hoorebeke, L., Herrel, A., & Adriaens, D. (2021). Regional patterning in tail vertebral form and function in chameleons (Chamaeleo calyptratus). Integrative and Comparative Biology, 61(2), 455-463. https://doi.org/10.1093/icb/icab125

Previous studies have focused on documenting shape variation in the caudal vertebrae in chameleons underlying prehensile tail function. The goal of this study was to test the impact of this variation on tail function using multibody dynamic analysis... Read More about Regional patterning in tail vertebral form and function in chameleons (Chamaeleo calyptratus).

Comparative cranial biomechanics in two lizard species: impact of variation in cranial design (2021)
Journal Article
Groning, F., Dutel, H., Gröning, F., Sharp, A. C., Watson, P. J., Herrel, A., …Fagan, M. J. (2021). Comparative cranial biomechanics in two lizard species: impact of variation in cranial design. The journal of experimental biology, 224(5), Article jeb.234831. https://doi.org/10.1242/jeb.234831

Cranial morphology in lepidosaurs is highly disparate and characterised by the frequent loss or reduction of bony elements. In varanids and geckos, the loss of the postorbital bar is associated with changes in skull shape, but the mechanical principl... Read More about Comparative cranial biomechanics in two lizard species: impact of variation in cranial design.

Predicting calvarial growth in normal and craniosynostotic mice using a computational approach (2017)
Journal Article
Marghoub, A., Libby, J., Babbs, C., Pauws, E., Fagan, M. J., & Moazen, M. (2018). Predicting calvarial growth in normal and craniosynostotic mice using a computational approach. Journal of anatomy, 232(3), 440-448. https://doi.org/10.1111/joa.12764

© 2017 Anatomical Society During postnatal calvarial growth the brain grows gradually and the overlying bones and sutures accommodate that growth until the later juvenile stages. The whole process is coordinated through a complex series of biological... Read More about Predicting calvarial growth in normal and craniosynostotic mice using a computational approach.

The biomechanical role of the chondrocranium and sutures in a lizard cranium (2017)
Journal Article
Jones, M. E. H., Gröning, F., Dutel, H., Sharp, A., Fagan, M. J., & Evans, S. E. (2017). The biomechanical role of the chondrocranium and sutures in a lizard cranium. Journal of the Royal Society interface / the Royal Society, 14(137), Article 20170637. https://doi.org/10.1098/rsif.2017.0637

The role of soft tissues in skull biomechanics remains poorly understood. Not least, the chondrocranium, the portion of the braincase which persists as cartilage with varying degrees of mineralization. It also remains commonplace to overlook the biom... Read More about The biomechanical role of the chondrocranium and sutures in a lizard cranium.

Skeletal immaturity, rostral sparing, and disparate hip morphologies as biomechanical causes for Legg-Calvé-Perthes’ disease (2016)
Journal Article
Berthaume, M. A., Perry, D. C., Dobson, C. A., Witzel, U., Clarke, N. M., & Fagan, M. J. (2016). Skeletal immaturity, rostral sparing, and disparate hip morphologies as biomechanical causes for Legg-Calvé-Perthes’ disease. Clinical Anatomy, 29(6), 759-772. https://doi.org/10.1002/ca.22690

Legg-Calvé-Perthes' (Perthes') disease is a developmental disease of the hip joint that may result in numerous short and long term problems. The etiology of the disease remains largely unknown, but the mechanism is believed to be vascular and/or biom... Read More about Skeletal immaturity, rostral sparing, and disparate hip morphologies as biomechanical causes for Legg-Calvé-Perthes’ disease.

Sensitivity to model geometry in finite element analyses of reconstructed skeletal structures: Experience with a juvenile pelvis (2014)
Journal Article
Watson, P. J., Fagan, M. J., & Dobson, C. A. (2015). Sensitivity to model geometry in finite element analyses of reconstructed skeletal structures: Experience with a juvenile pelvis. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 229(1), 9-19. https://doi.org/10.1177/0954411914564476

Biomechanical analysis of juvenile pelvic growth can be used in the evaluation of medical devices and investigation of hip joint disorders. This requires access to scan data of healthy juveniles, which are not always freely available. This article an... Read More about Sensitivity to model geometry in finite element analyses of reconstructed skeletal structures: Experience with a juvenile pelvis.

Masticatory biomechanics in the rabbit: a multi-body dynamics analysis (2014)
Journal Article
Watson, P. J., Gröning, F., Curtis, N., Fitton, L. C., Herrel, A., McCormack, S. W., & Fagan, M. J. (2014). Masticatory biomechanics in the rabbit: a multi-body dynamics analysis. Journal of the Royal Society interface / the Royal Society, 11(99), Article 20140564. https://doi.org/10.1098/rsif.2014.0564

Multi-body dynamics is a powerful engineering tool which is becoming increasingly popular for the simulation and analysis of skull biomechanics. This paper presents the first application of multi-body dynamics to analyse the biomechanics of the rabbi... Read More about Masticatory biomechanics in the rabbit: a multi-body dynamics analysis.

The biomechanical function of periodontal ligament fibres in orthodontic tooth movement (2014)
Journal Article
McCormack, S. W., Witzel, U., Watson, P. J., Fagan, M. J., & Gröning, F. (2014). The biomechanical function of periodontal ligament fibres in orthodontic tooth movement. PLoS ONE, 9(7), e102387. https://doi.org/10.1371/journal.pone.0102387

Orthodontic tooth movement occurs as a result of resorption and formation of the alveolar bone due to an applied load, but the stimulus responsible for triggering orthodontic tooth movement remains the subject of debate. It has been suggested that th... Read More about The biomechanical function of periodontal ligament fibres in orthodontic tooth movement.