Skip to main content

Research Repository

Advanced Search

Functional relationship between skull form and feeding mechanics in Sphenodon, and implications for diapsid skull development (2011)
Journal Article
Curtis, N., Jones, M. E. H., Shi, J., O'Higgins, P., Evans, S. E., & Fagan, M. J. (2011). Functional relationship between skull form and feeding mechanics in Sphenodon, and implications for diapsid skull development. PLoS ONE, 6(12), Article ARTN e29804. https://doi.org/10.1371/journal.pone.0029804

The vertebrate skull evolved to protect the brain and sense organs, but with the appearance of jaws and associated forces there was a remarkable structural diversification. This suggests that the evolution of skull form may be linked to these forces,... Read More about Functional relationship between skull form and feeding mechanics in Sphenodon, and implications for diapsid skull development.

The head and neck muscles associated with feeding in sphenodon (Reptilia: Lepidosauria: Rhynchocephalia) (2011)
Journal Article
Curtis, N., Jones, M. E., Junfen, S., O'Higgins, P., Evans, S. E., & Fagan, M. (2011). The head and neck muscles associated with feeding in sphenodon (Reptilia: Lepidosauria: Rhynchocephalia). Palaeontologia electronica, 12(2), 0 - 0. https://doi.org/10.1371/journal.pone.0029804

Feeding in Sphenodon, the tuatara of New Zealand, is of interest for several reasons. First, the modern animal is threatened by extinction, and some populations are in competition for food with Pacific rats. Second, Sphenodon demonstrates a feeding a... Read More about The head and neck muscles associated with feeding in sphenodon (Reptilia: Lepidosauria: Rhynchocephalia).

The Mechanical Significance of the Temporal Fasciae in Macaca fascicularis: An Investigation Using Finite Element Analysis (2011)
Journal Article
Curtis, N., Witzel, U., Fitton, L., O'Higgins, P., & Fagan, M. (2011). The Mechanical Significance of the Temporal Fasciae in Macaca fascicularis: An Investigation Using Finite Element Analysis. Anatomical Record: Advances in Integrative Anatomy and Evolutionary Biology, 294(7), 1178-1190. https://doi.org/10.1002/ar.21415

Computational finite element analyses (FEAs) of the skull predict structural deformations under user specified loads and constraints, with results normally presented as stress and strain distributions over the skull's surface. The applied loads are g... Read More about The Mechanical Significance of the Temporal Fasciae in Macaca fascicularis: An Investigation Using Finite Element Analysis.

The application of muscle wrapping to voxel-based finite element models of skeletal structures (2011)
Journal Article
Liu, J., Shi, J., Fitton, L. C., Phillips, R., O'Higgins, P., & Fagan, M. J. (2012). The application of muscle wrapping to voxel-based finite element models of skeletal structures. Biomechanics and Modeling in Mechanobiology, 11(1-2), 35-47. https://doi.org/10.1007/s10237-011-0291-5

Finite elements analysis (FEA) is now used routinely to interpret skeletal form in terms of function in both medical and biological applications. To produce accurate predictions from FEA models, it is essential that the loading due to muscle action i... Read More about The application of muscle wrapping to voxel-based finite element models of skeletal structures.