Skip to main content

Research Repository

Advanced Search

Investigating oxygen transport efficiencies in precision-cut liver slice-based organ-on-a-chip devices (2021)
Journal Article
Christensen, M. G., Cawthorne, C., Dyer, C. E., Greenman, J., & Pamme, N. (2021). Investigating oxygen transport efficiencies in precision-cut liver slice-based organ-on-a-chip devices. Microfluidics and Nanofluidics, 25(4), Article 35. https://doi.org/10.1007/s10404-021-02434-x

Microfluidic ‘organ-on-a-chip’ devices hold great potential for better mimicking the continuous flow microenvironment experienced by tissue and cells in vivo, thereby ensuring realistic transport of nutrients and elimination of waste products. Howeve... Read More about Investigating oxygen transport efficiencies in precision-cut liver slice-based organ-on-a-chip devices.

On-chip determination of C-reactive protein using magnetic particles in continuous flow (2014)
Journal Article
Phurimsak, C., Tarn, M. D., Peyman, S. A., Greenman, J., & Pamme, N. (2014). On-chip determination of C-reactive protein using magnetic particles in continuous flow. Analytical chemistry, 86(21), 10552-10559. https://doi.org/10.1021/ac5023265

We demonstrate the application of a multilaminar flow platform, in which functionalized magnetic particles are deflected through alternating laminar flow streams of reagents and washing solutions via an external magnet, for the rapid detection of the... Read More about On-chip determination of C-reactive protein using magnetic particles in continuous flow.

Flow focussing of particles and cells based on their intrinsic properties using a simple diamagnetic repulsion setup (2011)
Journal Article
Rodríguez-Villarreal, A. I., Tarn, M. D., Madden, L. A., Lutz, J. B., Greenman, J., Samitier, J., & Pamme, N. (2011). Flow focussing of particles and cells based on their intrinsic properties using a simple diamagnetic repulsion setup. Lab on a chip, 11(7), 1240-1248. https://doi.org/10.1039/c0lc00464b

The continuous flow focussing and manipulation of particles and cells are important factors in microfluidic applications for performing accurate and reproducible procedures downstream. Many particle focussing methods require complex setups or channel... Read More about Flow focussing of particles and cells based on their intrinsic properties using a simple diamagnetic repulsion setup.