Skip to main content

Research Repository

Advanced Search

Skeleton Marching-based Parallel Vascular Geometry Reconstruction Using Implicit Functions (2019)
Journal Article
Qi, Q., Li, Q. D., Cheng, Y., & Hong, Q. Q. (2020). Skeleton Marching-based Parallel Vascular Geometry Reconstruction Using Implicit Functions. International Journal of Automation and Computing, 17(1), 30-43. https://doi.org/10.1007/s11633-019-1189-4

Fast high-precision patient-specific vascular tissue and geometric structure reconstruction is an essential task for vascular tissue engineering and computer-aided minimally invasive vascular disease diagnosis and surgery. In this paper, we present a... Read More about Skeleton Marching-based Parallel Vascular Geometry Reconstruction Using Implicit Functions.

High precision implicit modeling for patient-specific coronary arteries (2019)
Journal Article
Hong, Q., Li, Q., Wang, B., Liu, K., & Qi, Q. (2019). High precision implicit modeling for patient-specific coronary arteries. IEEE Access, 7, 72020-72029. https://doi.org/10.1109/ACCESS.2019.2920113

High precision geometric reconstruction of patient-specific coronary arteries plays a crucial role in visual diagnosis, treatment decision-making, and the evaluation of the therapeutic effect of interventions in coronary artery diseases. It is also a... Read More about High precision implicit modeling for patient-specific coronary arteries.

Multilevel refinable triangular PSP-splines (Tri-PSPS) (2015)
Journal Article
Li, Q., & Tian, J. (2015). Multilevel refinable triangular PSP-splines (Tri-PSPS). Computers & mathematics with applications, 70(8), 1781-1798. https://doi.org/10.1016/j.camwa.2015.07.017

A multi-level spline technique known as partial shape preserving splines (PSPS) (Li and Tian, 2011) has recently been developed for the design of piecewise polynomial freeform geometric surfaces, where the basis functions of the PSPS can be directly... Read More about Multilevel refinable triangular PSP-splines (Tri-PSPS).

3D vasculature segmentation using localized hybrid level-set method (2014)
Journal Article
Hong, Q., Li, Q., Wang, B., Li, Y., Yao, J., Liu, K., & Wu, Q. (2014). 3D vasculature segmentation using localized hybrid level-set method. BioMedical Engineering OnLine, 13(1), 169. https://doi.org/10.1186/1475-925X-13-169

Background: Intensity inhomogeneity occurs in many medical images, especially in vessel images. Overcoming the difficulty due to image inhomogeneity is crucial for the segmentation of vessel image. Methods: This paper proposes a localized hybrid leve... Read More about 3D vasculature segmentation using localized hybrid level-set method.