University of Hull logo

Data and videos for ultrafast synchrotron X-ray imaging studies of metal solidification under ultrasound (2018)
Journal Article
Wang, B., Tan, D., Lee, T. L., Khong, J. C., Wang, F., Eskin, D., …Mi, J. (2018). Data and videos for ultrafast synchrotron X-ray imaging studies of metal solidification under ultrasound. Data in Brief, 17, (837-841). doi:10.1016/j.dib.2018.01.110. ISSN 2352-3409

The data presented in this article are related to the paper entitled ‘Ultrafast synchrotron X-ray imaging studies of microstructure fragmentation in solidification under ultrasound’ [Wang et al., Acta Mater. 144 (2018) 505-515]. This data article pro... Read More

Theoretical study of the CO2 adsorption by Zeolitic Imidazolate Frameworks (ZIFs) (2017)
Journal Article
Izzaouihda, S., Abou El Makarim, H., Benoit, D. M., & Komiha, N. (2017). Theoretical study of the CO2 adsorption by Zeolitic Imidazolate Frameworks (ZIFs). Journal of physical chemistry. C, 121(37), (20259-20265). doi:10.1021/acs.jpcc.7b04977. ISSN 1932-7447

Density functional theory with Grimme's empirical correction, DFT-D3, has been used to examine the adsorption of a carbon dioxide molecule by different sets of zeolitic imidazolate framework materials (ZIF-1 to -4, -6 to -10, and -zni). We have calcu... Read More

Numerical and physical simulation of rapid microstructural evolution of gas atomised Ni superalloy powders (2016)
Journal Article
Li, Z., Grant, P. S., Zheng, L., Lee, T. L., Liu, N., Liu, Z., …Grant, P. (2017). Numerical and physical simulation of rapid microstructural evolution of gas atomised Ni superalloy powders. Materials & design, 117, (157-167). doi:10.1016/j.matdes.2016.12.074. ISSN 0264-1275

The rapid microstructural evolution of gas atomised Ni superalloy powder compacts over timescales of a few seconds was studied using a Gleeble 3500 thermomechanical simulator, finite element based numerical model and electron microscopy. The study fo... Read More

Ocean acidification affects marine chemical communication by changing structure and function of peptide signalling molecules (2016)
Journal Article
Roggatz, C. C., Lorch, M., Hardege, J. D., & Benoit, D. M. (2016). Ocean acidification affects marine chemical communication by changing structure and function of peptide signalling molecules. Global change biology, 22(12), (3914-3926). doi:10.1111/gcb.13354. ISSN 1354-1013

Ocean acidification is a global challenge that faces marine organisms in the near future with a predicted rapid drop in pH of up to 0.4 units by the end of this century. Effects of the change in ocean carbon chemistry and pH on the development, growt... Read More