Skip to main content

Research Repository

Advanced Search

Outputs (46)

Long-Range and High-Efficiency Plasmon-Assisted Förster Resonance Energy Transfer (2023)
Journal Article
Hamza, A. O., Al-Dulaimi, A., Bouillard, J. S. G., & Adawi, A. M. (2023). Long-Range and High-Efficiency Plasmon-Assisted Förster Resonance Energy Transfer. Journal of physical chemistry. C, 127(44), 21611–21616. https://doi.org/10.1021/acs.jpcc.3c04281

The development of a long-range and efficient Förster resonance energy transfer (FRET) process is essential for its application in key enabling optoelectronic and sensing technologies. Via controlling the delocalization of the donor’s electric field... Read More about Long-Range and High-Efficiency Plasmon-Assisted Förster Resonance Energy Transfer.

Magnetic Mode Coupling in Hyperbolic Bowtie Meta-Antennas (2023)
Journal Article
Ebrahimi, S., Muravitskaya, A., Adawi, A. M., Baudrion, A. L., Adam, P. M., & Bouillard, J. S. G. (2023). Magnetic Mode Coupling in Hyperbolic Bowtie Meta-Antennas. Journal of Physical Chemistry Letters, 14(35), 7824-7832. https://doi.org/10.1021/acs.jpclett.3c01620

Hyperbolic metaparticles have emerged as the next step in metamaterial applications, providing tunable electromagnetic properties on demand. However, coupling of optical modes in hyperbolic meta-antennas has not been explored. Here, we present in det... Read More about Magnetic Mode Coupling in Hyperbolic Bowtie Meta-Antennas.

Organic copolymer lasing from single defect microcavity fabricated using laser patterning (2023)
Journal Article
Claronino, P., Jayaprakash, R., Jessewitsch, T., Kilbride, R. C., Thornber, T., Muravitskaya, A., …Lidzey, D. G. (2023). Organic copolymer lasing from single defect microcavity fabricated using laser patterning. Journal of Materials Chemistry C, https://doi.org/10.1039/d2tc05360h

Reducing the lasing threshold in optically pumped organic lasers is a necessary component of the drive to develop an organic laser diode, as this may help mitigate the losses associated with electrical contacts and charge injection. In this study we... Read More about Organic copolymer lasing from single defect microcavity fabricated using laser patterning.

Stark Effect Control of the Scattering Properties of Plasmonic Nanogaps (2022)
Journal Article
Pagnotto, D., Muravitskaya, A., Benoit, D. M., Bouillard, J. S. G., & Adawi, A. M. (2023). Stark Effect Control of the Scattering Properties of Plasmonic Nanogaps. ACS Applied Optical Materials, 1(1), 500–506. https://doi.org/10.1021/acsaom.2c00135

The development of actively tunable plasmonic nanostructures enables real-time and on-demand enhancement of optical signals. This is an essential requirement for a wide range of applications such as sensing and nanophotonic devices. Here we show that... Read More about Stark Effect Control of the Scattering Properties of Plasmonic Nanogaps.

Using adsorption kinetics to assemble vertically aligned nanorods at liquid interfaces for metamaterial applications (2022)
Journal Article
Morgan, S. O., Muravitskaya, A., Lowe, C., Adawi, A. M., Bouillard, J. G., Horozov, T. S., …Buzza, D. M. (2022). Using adsorption kinetics to assemble vertically aligned nanorods at liquid interfaces for metamaterial applications. Physical chemistry chemical physics : PCCP, 24, 11000-11013. https://doi.org/10.1039/d1cp05484h

Vertically aligned monolayers of metallic nanorods have a wide range of applications as metamaterials or in surface enhanced Raman spectroscopy. However the fabrication of such structures using current top-down methods or through assembly on solid su... Read More about Using adsorption kinetics to assemble vertically aligned nanorods at liquid interfaces for metamaterial applications.

Persistent near-infrared photoconductivity of ZnO nanoparticles based on plasmonic hot charge carriers (2022)
Journal Article
Ibrahem, M. A., Verrelli, E., Cheng, F., Adawi, A. M., Bouillard, J. S. G., & O'Neill, M. (2022). Persistent near-infrared photoconductivity of ZnO nanoparticles based on plasmonic hot charge carriers. Journal of applied physics, 131(10), Article 103103. https://doi.org/10.1063/5.0079006

We report on the coupling of ZnO nanoparticles with plasmonic gold nanoislands in a solution-processed photodetector, which results in a clear enhancement in the optical absorption and the electrical responsivity of ZnO nanoparticles, to cover the vi... Read More about Persistent near-infrared photoconductivity of ZnO nanoparticles based on plasmonic hot charge carriers.

Förster Resonance Energy Transfer Rate and Efficiency in Plasmonic Nanopatch Antennas (2022)
Journal Article
Hamza, A. O., Bouillard, J. S. G., & Adawi, A. M. (in press). Förster Resonance Energy Transfer Rate and Efficiency in Plasmonic Nanopatch Antennas. Chemphotochem, https://doi.org/10.1002/cptc.202100285

Successful control of Förster resonance energy transfer (FRET) through the engineering of the local density of optical states (LDOS) will allow us to develop novel strategies to fully exploit this phenomenon in key enabling technologies. Here we pres... Read More about Förster Resonance Energy Transfer Rate and Efficiency in Plasmonic Nanopatch Antennas.

Polarization tuning of an H1 organic–inorganic nano-cavity (2021)
Journal Article
Murshidy, M. M., Adawi, A. M., Fry, P. W., & Lidzey, D. G. (2021). Polarization tuning of an H1 organic–inorganic nano-cavity. Journal of applied physics, 129(20), Article 203103. https://doi.org/10.1063/5.0050458

We investigate the optical properties of the dipole-like modes of an H1 nano-cavity consisting of a single missing airhole imbedded into a triangular two-dimensional silicon nitride (Si3N4) based photonic crystal coated with a red-fluorescent molecul... Read More about Polarization tuning of an H1 organic–inorganic nano-cavity.

Adsorption trajectories of nonspherical particles at liquid interfaces (2021)
Journal Article
Buzza, D. M. A., Stasiuk, G. J., Horozov, T. S., Adawi, A. M., Bouillard, J. G., Lowe, C., …Morgan, S. O. (2021). Adsorption trajectories of nonspherical particles at liquid interfaces. Physical Review E, 103(4), Article 042604. https://doi.org/10.1103/PhysRevE.103.042604

The adsorption of colloidal particles at liquid interfaces is of great importance scientifically and industrially, but the dynamics of the adsorption process is still poorly understood. In this paper we use a Langevin model to study the adsorption dy... Read More about Adsorption trajectories of nonspherical particles at liquid interfaces.

Förster resonance energy transfer and the local optical density of states in plasmonic nanogaps (2021)
Journal Article
Hamza, A. O., Viscomi, F. N., Bouillard, J. S. G., & Adawi, A. M. (2021). Förster resonance energy transfer and the local optical density of states in plasmonic nanogaps. Journal of Physical Chemistry Letters, 12(5), 1507-1513. https://doi.org/10.1021/acs.jpclett.0c03702

Förster resonance energy transfer (FRET) is a fundamental phenomenon in photosynthesis and is of increasing importance for the development and enhancement of a wide range of optoelectronic devices, including color-tuning LEDs and lasers, light harves... Read More about Förster resonance energy transfer and the local optical density of states in plasmonic nanogaps.