Skip to main content

Research Repository

Advanced Search

All Outputs (2)

Dynamic electric field alignment of metal-organic framework micro- rods (2019)
Journal Article
Cheng, F., Young, A. J., Bouillard, J.-S. G., Kemp, N. T., Guillet-Nicolas, R., Hall, C. H., Roberts, D., Jaafar, A. H., Adawi, A. M., Kleitz, F., Imhof, A., Reithofer, M.-C. R., & Chin, J. M. (2019). Dynamic electric field alignment of metal-organic framework micro- rods. Journal of the American Chemical Society, 141(33), 12989-12993. https://doi.org/10.1021/jacs.9b06320

Alignment of Metal Organic Framework (MOF) crystals has previously been performed via careful control of oriented MOF growth on substrates, as well as by dynamic magnetic alignment. We show here that microrod crystals of the MOF NU-1000 can also be d... Read More about Dynamic electric field alignment of metal-organic framework micro- rods.

A label-free aptamer-based nanogap capacitive biosensor with greatly diminished electrode polarization effects (2019)
Journal Article
Ghobaei Namhil, Z., Kemp, C., Verrelli, E., Iles, A., Pamme, N., Adawi, A. M., & Kemp, N. (2019). A label-free aptamer-based nanogap capacitive biosensor with greatly diminished electrode polarization effects. Physical chemistry chemical physics : PCCP, 21(2), 681-691. https://doi.org/10.1039/c8cp05510f

A significant impediment to the use of impedance spectroscopy in bio-sensing is the electrode polarization effect that arises from the movement of free ions to the electrode-solution interface, forming an electrical double layer (EDL). The EDL screen... Read More about A label-free aptamer-based nanogap capacitive biosensor with greatly diminished electrode polarization effects.