Skip to main content

Research Repository

Advanced Search

All Outputs (2)

Mibefradil, a T-type Ca2+ channel blocker also blocks Orai channels by action at the extracellular surface (2019)
Journal Article
Li, P., Rubaiy, H. N., Chen, G.-L., Hallett, T., Zaibi, N., Zeng, B., Saurabh, R., & Xu, S.-Z. (2019). Mibefradil, a T-type Ca2+ channel blocker also blocks Orai channels by action at the extracellular surface. British Journal of Pharmacology, 176, 3845–3856. https://doi.org/10.1111/bph.14788

Background and purpose
Mibefradil (Mib), a T‐type Ca2+ channel blocker, has been investigated for treating solid tumours. However, its underlying mechanisms are still unclear. Here we aimed to investigate the pharmacological aspect of Mib on ORAI st... Read More about Mibefradil, a T-type Ca2+ channel blocker also blocks Orai channels by action at the extracellular surface.

Pharmacological comparison of novel synthetic fenamate analogues with econazole and 2-APB on the inhibition of TRPM2 channels (2012)
Journal Article
Chen, G.-L., Zeng, B., Eastmond, S., Elsenussi, S. E., Boa, A. N., & Xu, S.-Z. (2012). Pharmacological comparison of novel synthetic fenamate analogues with econazole and 2-APB on the inhibition of TRPM2 channels. British Journal of Pharmacology, 167(6), 1232-1243. https://doi.org/10.1111/j.1476-5381.2012.02058.x

BACKGROUND: Fenamate analogues, econazole and 2-APB are inhibitors of TRPM2 channels, which have been used as research tools. However, these compounds have different chemical structures and therapeutic applications. Here we aimed to investigate the p... Read More about Pharmacological comparison of novel synthetic fenamate analogues with econazole and 2-APB on the inhibition of TRPM2 channels.