Skip to main content

Research Repository

Advanced Search

All Outputs (2)

Inhomogeneous Galactic chemical evolution: modelling ultra-faint dwarf galaxies of the Large Magellanic Cloud (2023)
Journal Article
Alexander, R. K., Vincenzo, F., Ji, A. P., Richstein, H., Jordan, C. J., & Gibson, B. K. (2023). Inhomogeneous Galactic chemical evolution: modelling ultra-faint dwarf galaxies of the Large Magellanic Cloud. Monthly notices of the Royal Astronomical Society, 522(4), 5415-5433. https://doi.org/10.1093/mnras/stad1312

Ultra-faint dwarf galaxies (UFDs) are among the oldest and most metal-poor galaxies in the cosmos, observed to contain no gas and a high dark matter mass fraction. Understanding the chemical abundance dispersion in such extreme environments could she... Read More about Inhomogeneous Galactic chemical evolution: modelling ultra-faint dwarf galaxies of the Large Magellanic Cloud.

Carbon-rich presolar grains from massive stars : subsolar ¹²C/¹³C and ¹⁴N/¹⁵N ratios and the mystery of ¹⁵N (2015)
Journal Article
Pignatari, M., Zinner, E., Hoppe, P., J. Jordan, C., K. Gibson, B., Trappitsch, R., Herwig, F., Fryer, C., Hirschi, R., & X. Timmes, F. (2015). Carbon-rich presolar grains from massive stars : subsolar ¹²C/¹³C and ¹⁴N/¹⁵N ratios and the mystery of ¹⁵N. Astrophysical journal. Letters, 808(2), L43. https://doi.org/10.1088/2041-8205/808/2/L43

Carbon-rich grains with isotopic anomalies compared to the Sun are found in primitive meteorites. They were made by stars, and carry the original stellar nucleosynthesis signature. Silicon carbide grains of Type X and C and low-density (LD) graphites... Read More about Carbon-rich presolar grains from massive stars : subsolar ¹²C/¹³C and ¹⁴N/¹⁵N ratios and the mystery of ¹⁵N.