Skip to main content

Research Repository

Advanced Search

All Outputs (5)

Knickpoints and crescentic bedform interactions in submarine channels (2021)
Journal Article
Chen, Y., Parsons, D. R., Simmons, S. M., Williams, R., Cartigny, M. J. B., Hughes Clarke, J. E., …Vendettuoli, D. (2021). Knickpoints and crescentic bedform interactions in submarine channels. Sedimentology, 68(4), 1358-1377. https://doi.org/10.1111/sed.12886

Submarine channels deliver globally important volumes of sediments, nutrients, contaminants and organic carbon into the deep sea. Knickpoints are significant topographic features found within numerous submarine channels, which most likely play an imp... Read More about Knickpoints and crescentic bedform interactions in submarine channels.

UK Parliament Environment, Food and Rural Affairs Select Committee Flooding Inquiry: Written Evidence from Dr Kate Smith et al. (FLO0043) (2021)
Report
Smith, K., Thomas, R. E., Skinner, C., Davidson, G., Parsons, D., McLelland, S., …Betts, P. (2021). UK Parliament Environment, Food and Rural Affairs Select Committee Flooding Inquiry: Written Evidence from Dr Kate Smith et al. (FLO0043)

This submission presents the research conducted within the Energy and Environment Institute at the University of Hull. Our work demonstrates that hazards represented by flooding have multiple dimensions, and that solutions to them need to take these... Read More about UK Parliament Environment, Food and Rural Affairs Select Committee Flooding Inquiry: Written Evidence from Dr Kate Smith et al. (FLO0043).

A bedform phase diagram for dense granular currents (2020)
Journal Article
Smith, G., Rowley, P., Williams, R., Giordano, G., Trolese, M., Silleni, A., Parsons, D. R., & Capon, S. (2020). A bedform phase diagram for dense granular currents. Nature communications, 11(1), Article 2873. https://doi.org/10.1038/s41467-020-16657-z

Pyroclastic density currents (PDCs) are a life-threatening volcanic hazard. Our understanding and hazard assessments of these flows rely on interpretations of their deposits. The occurrence of stratified layers, cross-stratification, and bedforms in... Read More about A bedform phase diagram for dense granular currents.

Wave ripple development on mixed clay-sand substrates: Effects of clay winnowing and armoring (2018)
Journal Article
Wu, X., Baas, J. H., Parsons, D. R., Eggenhuisen, J., Amoudry, L., Cartigny, M., McLelland, S., Mouazé, D., & Ruessink, G. (2018). Wave ripple development on mixed clay-sand substrates: Effects of clay winnowing and armoring. Journal of Geophysical Research: Earth Surface, 123(11), 2784-2801. https://doi.org/10.1029/2018JF004681

Based on bed form experiments in a large‐scale flume, we demonstrate that the rate of development of wave ripples on a mixed sand‐clay bed under regular waves is significantly lower than on a pure‐sand bed, even at clay fractions as low as 4.2%, and... Read More about Wave ripple development on mixed clay-sand substrates: Effects of clay winnowing and armoring.

Investigation of variable aeration of monodisperse mixtures: implications for pyroclastic density currents (2018)
Journal Article
Smith, G. M., Williams, R., Rowley, P., & Parsons, D. R. (2018). Investigation of variable aeration of monodisperse mixtures: implications for pyroclastic density currents. Bulletin of volcanology, 80(8), Article 67. https://doi.org/10.1007/s00445-018-1241-1

The high mobility of dense pyroclastic density currents (PDCs) is commonly attributed to high gas pore pressures. However, the influence of spatial and temporal variations in pore pressure within PDCs has yet to be investigated. Theory suggests that... Read More about Investigation of variable aeration of monodisperse mixtures: implications for pyroclastic density currents.