Individual-based model of juvenile eel movement parametrized with computational fluid dynamics-derived flow fields informs improved fish pass design
(2020)
Journal Article
Padgett, T. E., Borman, D. J., Mould, D. C., Padgett, T., Thomas, R. E., Borman, D., & Mould, D. (2020). Individual-based model of juvenile eel movement parametrized with computational fluid dynamics-derived flow fields informs improved fish pass design. Royal Society Open Science, 7(1), Article 191505. https://doi.org/10.1098/rsos.191505
European eel populations have declined markedly in recent decades, caused in part by in-stream barriers, such as weirs and pumping stations, which disrupt the upstream migration of juvenile eels, or elvers, into rivers. Eel passes, narrow sloping cha... Read More about Individual-based model of juvenile eel movement parametrized with computational fluid dynamics-derived flow fields informs improved fish pass design.