Skip to main content

Research Repository

Advanced Search

All Outputs (2)

Powerful turbidity currents driven by dense basal layers (2018)
Journal Article
Paull, C. K., Talling, P. J., Maier, K. L., Parsons, D., Xu, J., Caress, D. W., Gwiazda, R., Lundsten, E. M., Anderson, K., Barry, J. P., Chaffey, M., O’Reilly, T., Rosenberger, K. J., Gales, J. A., Kieft, B., McGann, M., Simmons, S. M., McCann, M., Sumner, E. J., Clare, M. A., & Cartigny, M. J. (2018). Powerful turbidity currents driven by dense basal layers. Nature communications, 9(1), Article 4114. https://doi.org/10.1038/s41467-018-06254-6

Seafloor sediment flows (turbidity currents) are among the volumetrically most important yet least documented sediment transport processes on Earth. A scarcity of direct observations means that basic characteristics, such as whether flows are entirel... Read More about Powerful turbidity currents driven by dense basal layers.

Laboratory study on the effects of hydro kinetic turbines on hydrodynamics and sediment dynamics (2018)
Journal Article
Ramírez-Mendoza, R., Amoudry, L., Thorne, P., Cooke, R., McLelland, S., Jordan, L., Simmons, S., Parsons, D., & Murdoch, L. (2018). Laboratory study on the effects of hydro kinetic turbines on hydrodynamics and sediment dynamics. Renewable energy, 129(Part A), 271-284. https://doi.org/10.1016/j.renene.2018.05.094

© 2018 The Authors The need for hydrokinetic turbine wake characterisation and their environmental impact has led to a number of studies. However, a small number of them have taken into account mobile sediment bed effects. The aim of the present work... Read More about Laboratory study on the effects of hydro kinetic turbines on hydrodynamics and sediment dynamics.