Skip to main content

Research Repository

Advanced Search

All Outputs (4)

Factor VIIa regulates the level of cell-surface tissue factor through separate but cooperative mechanisms (2021)
Journal Article
Madkhali, Y., Rondon, A. M., Featherby, S., Maraveyas, A., Greenman, J., & Ettelaie, C. (2021). Factor VIIa regulates the level of cell-surface tissue factor through separate but cooperative mechanisms. Cancers, 13(15), Article 3718. https://doi.org/10.3390/cancers13153718

Procoagulant activity of tissue factor (TF) in response to injury or inflammation is accompanied with cellular signals which determine the fate of cells. However, to prevent excessive signalling, TF is rapidly dissipated through release into microves... Read More about Factor VIIa regulates the level of cell-surface tissue factor through separate but cooperative mechanisms.

An investigation into the regulation of cellular homeostasis through modulation of cell-surface tissue factor (2020)
Thesis
Madkhali, Y. A. An investigation into the regulation of cellular homeostasis through modulation of cell-surface tissue factor. (Thesis). University of Hull. https://hull-repository.worktribe.com/output/4836545

In recent years it has become evident that cell-derived microvesicles (MV) influence the recipient cells through inducing signalling mechanisms which lead to cell proliferation or apoptosis. In addition, the excessive release of procoagulant MV durin... Read More about An investigation into the regulation of cellular homeostasis through modulation of cell-surface tissue factor.

Accumulation of tissue factor in endothelial cells promotes cellular apoptosis through over-activation of Src1 and involves β1-integrin signalling (2019)
Journal Article
Ethaeb, A. M., Mohammad, M. A., Madkhali, Y., Maraveyas, A., Featherby, S., Greenman, J., & Ettelaie, C. (2020). Accumulation of tissue factor in endothelial cells promotes cellular apoptosis through over-activation of Src1 and involves β1-integrin signalling. Apoptosis, 25(1-2), 29-41. https://doi.org/10.1007/s10495-019-01576-2

Accumulation of tissue factor (TF) within cells leads to cellular apoptosis mediated through p38 and p53 pathways. In this study, the involvement of Src1 in the induction of TF-mediated cell apoptosis, and the mechanisms of Src1 activation were inves... Read More about Accumulation of tissue factor in endothelial cells promotes cellular apoptosis through over-activation of Src1 and involves β1-integrin signalling.

Apixaban suppresses the release of TF-positive microvesicles and restrains cancer cell proliferation through directly inhibiting TF-fVIIa activity (2019)
Journal Article
Featherby, S., Madkhali, Y., Maraveyas, A., & Ettelaie, C. (2019). Apixaban suppresses the release of TF-positive microvesicles and restrains cancer cell proliferation through directly inhibiting TF-fVIIa activity. Thrombosis and haemostasis, 119(9), 1419-1432. https://doi.org/10.1055/s-0039-1692682

The activation of protease-activated receptor (PAR)-2 by factor Xa (fXa) promotes the release of tissue factor-positive microvesicles (TF + MV), and contributes to proliferation in cancer cells. This study examined the ability of direct oral anticoag... Read More about Apixaban suppresses the release of TF-positive microvesicles and restrains cancer cell proliferation through directly inhibiting TF-fVIIa activity.