Skip to main content

Research Repository

Advanced Search

All Outputs (5)

Computational Intelligence for Safety Assurance of Cooperative Systems of Systems (2020)
Journal Article
Kabir, S., & Papadopoulos, Y. (2020). Computational Intelligence for Safety Assurance of Cooperative Systems of Systems. Computer, 53(12), 24-34. https://doi.org/10.1109/MC.2020.3014604

Cooperative systems of systems (CSoSs) form a new technological frontier for their enormous economic and societal potentials in various domains. This article presents a novel framework for dynamic safety assurance of CSoSs that integrates design time... Read More about Computational Intelligence for Safety Assurance of Cooperative Systems of Systems.

SafeML: Safety Monitoring of Machine Learning Classifiers Through Statistical Difference Measures (2020)
Presentation / Conference Contribution
Aslansefat, K., Sorokos, I., Whiting, D., Tavakoli Kolagari, R., & Papadopoulos, Y. SafeML: Safety Monitoring of Machine Learning Classifiers Through Statistical Difference Measures. Presented at IMBSA: International Symposium on Model-Based Safety and Assessment, Lisbon

Ensuring safety and explainability of machine learning (ML) is a topic of increasing relevance as data-driven applications venture into safety-critical application domains, traditionally committed to high safety standards that are not satisfied with... Read More about SafeML: Safety Monitoring of Machine Learning Classifiers Through Statistical Difference Measures.

Failure Mode Reasoning in Model Based Safety Analysis (2020)
Presentation / Conference Contribution
Jahanian, H., Parker, D., Zeller, M., McIver, A., & Papadopoulos, Y. Failure Mode Reasoning in Model Based Safety Analysis. Presented at International Symposium on Model-Based Safety and Assessment, Lisbon, Portugal

© 2020, Springer Nature Switzerland AG. Failure Mode Reasoning (FMR) is a novel approach for analyzing failure in a Safety Instrumented System (SIS). The method uses an automatic analysis of an SIS program to calculate potential failures in parts of... Read More about Failure Mode Reasoning in Model Based Safety Analysis.

An Integrated Approach to Support the Process-Based Certification of Variant-Intensive Systems (2020)
Presentation / Conference Contribution
Bressan, L., de Oliveira, A. L., Campos, F., Papadopoulos, Y., & Parker, D. An Integrated Approach to Support the Process-Based Certification of Variant-Intensive Systems. Presented at Model-Based Safety and Assessment 7th International Symposium, IMBSA 2020, Lisbon, Portugal

© 2020, Springer Nature Switzerland AG. Component-based approaches and software product lines have been adopted by industry to manage the diversity of configurations on safety-critical software. Safety certification demands compliance with standards.... Read More about An Integrated Approach to Support the Process-Based Certification of Variant-Intensive Systems.

A Hybrid Modular Approach for Dynamic Fault Tree Analysis (2020)
Journal Article
Kabir, S., Aslansefat, K., Sorokos, I., Papadopoulos, Y., & Konur, S. (2020). A Hybrid Modular Approach for Dynamic Fault Tree Analysis. IEEE Access, 8, 97175-97188. https://doi.org/10.1109/ACCESS.2020.2996643

Over the years, several approaches have been developed for the quantitative analysis of dynamic fault trees (DFTs). These approaches have strong theoretical and mathematical foundations; however, they appear to suffer from the state-space explosion a... Read More about A Hybrid Modular Approach for Dynamic Fault Tree Analysis.