Skip to main content

Research Repository

Advanced Search

All Outputs (7)

Removal of Human Leukemic Cells from Peripheral Blood Mononuclear Cells by Cell Recognition Chromatography with Size Matched Particle Imprints (2020)
Journal Article
Chester, R., Das, A. A. K., Medlock, J., Nees, D., Allsup, D. J., Madden, L. A., & Paunov, V. N. (2020). Removal of Human Leukemic Cells from Peripheral Blood Mononuclear Cells by Cell Recognition Chromatography with Size Matched Particle Imprints. ACS Applied Bio Materials, 3(2), 789-800. https://doi.org/10.1021/acsabm.9b00770

We report a cell recognition chromatography approach for blood cancer cell separation from healthy peripheral blood mononuclear cells (PBMCs) based on sizematched functionalized particle imprints. Negative imprints were prepared from layers of 15 μm... Read More about Removal of Human Leukemic Cells from Peripheral Blood Mononuclear Cells by Cell Recognition Chromatography with Size Matched Particle Imprints.

Targeted removal of blood cancer cells from mixed cell populations by cell recognition with matching particle imprints (2019)
Journal Article
Das, A. A., Remaud, P., Medlock, J., Das, A. A. K., Allsup, D. J., Madden, L. A., …Paunov, V. N. (2019). Targeted removal of blood cancer cells from mixed cell populations by cell recognition with matching particle imprints. Materials Chemistry Frontiers, 4(1), 197-205. https://doi.org/10.1039/c9qm00531e

We report a new approach for separation of blood cancer cells from healthy white blood cells based on cell recognition by surface functionalised particle imprints. We prepared polymeric particle imprints from a layer of suspension of monodisperse PMM... Read More about Targeted removal of blood cancer cells from mixed cell populations by cell recognition with matching particle imprints.

Fabrication of Human Keratinocyte Cell Clusters for Skin Graft Applications by Templating Water-in-Water Pickering Emulsions (2019)
Journal Article
Celik, S., Dominici, S., Filby, B., Das, A., Madden, L. A., & Paunov, V. N. (2019). Fabrication of Human Keratinocyte Cell Clusters for Skin Graft Applications by Templating Water-in-Water Pickering Emulsions. Biomimetics, 4(3), Article 50. https://doi.org/10.3390/biomimetics4030050

Most current methods for the preparation of tissue spheroids require complex materials, involve tedious physical steps and are generally not scalable. We report a novel alternative, which is both inexpensive and up-scalable, to produce large quantiti... Read More about Fabrication of Human Keratinocyte Cell Clusters for Skin Graft Applications by Templating Water-in-Water Pickering Emulsions.

Bioimprint aided cell recognition and depletion of human leukemic HL60 cells from peripheral blood (2019)
Journal Article
Das, A. A., Medlock, J., Liang, H., Nees, D., Allsup, D. J., Madden, L. A., & Paunov, V. N. (2019). Bioimprint aided cell recognition and depletion of human leukemic HL60 cells from peripheral blood. Journal of Materials Chemistry B, 7(22), 3497-3504. https://doi.org/10.1039/c9tb00679f

We report a large scale preparation of bioimprints of layers of cultured human leukemic HL60 cells which can perform cell shape and size recognition from a mixture with peripheral blood mononuclear cells (PBMCs). We demonstrate that the bioimprint-ce... Read More about Bioimprint aided cell recognition and depletion of human leukemic HL60 cells from peripheral blood.

Cancer bioimprinting and cell shape recognition for diagnosis and targeted treatment (2017)
Journal Article
Medlock, J., Das, A. A. K., Madden, L. A., Allsup, D. J., & Paunov, V. N. (2017). Cancer bioimprinting and cell shape recognition for diagnosis and targeted treatment. Chemical Society Reviews, 46(16), 5110-5127. https://doi.org/10.1039/c7cs00179g

Cancer incidence and mortality have both increased in the last decade and are predicted to continue to rise. Diagnosis and treatment of cancers are often hampered by the inability to specifically target neoplastic cells. Bioimprinting is a promising... Read More about Cancer bioimprinting and cell shape recognition for diagnosis and targeted treatment.

Duramycin-porphyrin conjugates for targeting of tumour cells using photodynamic therapy (2016)
Journal Article
Broughton, L. J., Giuntini, F., Savoie, H., Bryden, F., Boyle, R. W., Maraveyas, A., & Madden, L. A. (2016). Duramycin-porphyrin conjugates for targeting of tumour cells using photodynamic therapy. Journal of photochemistry and photobiology. B, Biology, 163, 374-384. https://doi.org/10.1016/j.jphotobiol.2016.09.001

Duramycin, through binding with phosphatidylethanolamine (PE), has been shown to be a selective molecular probe for the targeting and imaging of cancer cells. Photodynamic therapy aims to bring about specific cytotoxic damage to tumours through deliv... Read More about Duramycin-porphyrin conjugates for targeting of tumour cells using photodynamic therapy.

Binding Optimization through Coordination Chemistry: CXCR4 Chemokine Receptor Antagonists from Ultrarigid Metal Complexes (2009)
Journal Article
Khan, A., Nicholson, G., McRobbie, G., Pannecouque, C., De Clercq, E., Ullom, R., …Greenman, J. (2009). Binding Optimization through Coordination Chemistry: CXCR4 Chemokine Receptor Antagonists from Ultrarigid Metal Complexes. Journal of the American Chemical Society, 131(10), 3416-3417. https://doi.org/10.1021/ja807921k

A new copper(II) containing bis-macrocyclic CXCR4 chemokine receptor antagonist is shown to have improved binding properties to the receptor protein in comparison to the drug AMD3100 (Plerixafor, Mozobil). The interaction of the metallodrug has been... Read More about Binding Optimization through Coordination Chemistry: CXCR4 Chemokine Receptor Antagonists from Ultrarigid Metal Complexes.