Skip to main content

Research Repository

Advanced Search

All Outputs (3)

An efficient mathematical model for air-breathing PEM fuel cells (2014)
Journal Article
Ismail, M. S., Ingham, D. B., Hughes, K. J., Ma, L., & Pourkashanian, M. (2014). An efficient mathematical model for air-breathing PEM fuel cells. Applied energy, 135, 490-503. https://doi.org/10.1016/j.apenergy.2014.08.113

A simple and efficient mathematical model for air-breathing proton exchange membrane (PEM) fuel cells has been built. One of the major objectives of this study is to investigate the effects of the Joule and entropic heat sources, which are often negl... Read More about An efficient mathematical model for air-breathing PEM fuel cells.

The through-plane thermal conductivity and the contact resistance of the components of the membrane electrode assembly and gas diffusion layer in proton exchange membrane fuel cells (2014)
Journal Article
Alhazmi, N., Ingham, D. B., Ismail, M. S., Hughes, K., Ma, L., & Pourkashanian, M. (2014). The through-plane thermal conductivity and the contact resistance of the components of the membrane electrode assembly and gas diffusion layer in proton exchange membrane fuel cells. Journal of power sources, 270, 59-67. https://doi.org/10.1016/j.jpowsour.2014.07.082

The thermal conductivity of the components of the membrane electrode assembly (MEA) and GDL must be accurately estimated in order to better understand the heat transfer processes in the proton exchange membrane (PEM) fuel cells. In this study, an exp... Read More about The through-plane thermal conductivity and the contact resistance of the components of the membrane electrode assembly and gas diffusion layer in proton exchange membrane fuel cells.

The fuel cell model of abiogenesis: A new approach to origin-of-life simulations (2014)
Journal Article
Barge, L. M., Kee, T. P., Doloboff, I. J., Hampton, J. M., Ismail, M., Pourkashanian, M., …Kanik, I. (2014). The fuel cell model of abiogenesis: A new approach to origin-of-life simulations. Astrobiology, 14(3), 254-270. https://doi.org/10.1089/ast.2014.1140

In this paper, we discuss how prebiotic geo-electrochemical systems can be modeled as a fuel cell and how laboratory simulations of the origin of life in general can benefit from this systems-led approach. As a specific example, the components of wha... Read More about The fuel cell model of abiogenesis: A new approach to origin-of-life simulations.