Skip to main content

Research Repository

Advanced Search

All Outputs (14)

Neural network and URED observer based fast terminal integral sliding mode control for energy efficient polymer electrolyte membrane fuel cell used in vehicular technologies (2023)
Journal Article
Javaid, U., Mehmood, A., Iqbal, J., & Uppal, A. A. (2023). Neural network and URED observer based fast terminal integral sliding mode control for energy efficient polymer electrolyte membrane fuel cell used in vehicular technologies. Energy, 269, Article 126717. https://doi.org/10.1016/j.energy.2023.126717

In this research work, a Neural Network (NN) and Uniform Robust Exact Differentiator (URED) observer-based Fast Terminal Integral Sliding Mode Control (FTISMC) has been proposed for Oxygen Excess Ratio (OER) regulation of a Polymer Electrolyte Membra... Read More about Neural network and URED observer based fast terminal integral sliding mode control for energy efficient polymer electrolyte membrane fuel cell used in vehicular technologies.

Performance improvement in polymer electrolytic membrane fuel cell based on nonlinear control strategies—A comprehensive study (2022)
Journal Article
Javaid, U., Iqbal, J., Mehmood, A., & Uppal, A. A. (2022). Performance improvement in polymer electrolytic membrane fuel cell based on nonlinear control strategies—A comprehensive study. PLoS ONE, 17(2 February), Article e0264205. https://doi.org/10.1371/journal.pone.0264205

A Polymer Electrolytic Membrane Fuel Cell (PEMFC) is an efficient power device for automobiles, but its efficiency and life span depend upon its air delivery system. To ensure improved performance of PEMFC, the air delivery system must ensure proper... Read More about Performance improvement in polymer electrolytic membrane fuel cell based on nonlinear control strategies—A comprehensive study.

Adaptive FIT-SMC Approach for an Anthropomorphic Manipulator With Robust Exact Differentiator and Neural Network-Based Friction Compensation (2022)
Journal Article
Ali, K., Ullah, S., Mehmood, A., Mostafa, H., Marey, M., & Iqbal, J. (2022). Adaptive FIT-SMC Approach for an Anthropomorphic Manipulator With Robust Exact Differentiator and Neural Network-Based Friction Compensation. IEEE Access, 10, 3378-3389. https://doi.org/10.1109/ACCESS.2021.3139041

In robotic manipulators, feedback control of nonlinear systems with fast finite-time convergence is desirable. However, because of the parametric and model uncertainties, the robust control and tuning of the robotic manipulators pose many challenges... Read More about Adaptive FIT-SMC Approach for an Anthropomorphic Manipulator With Robust Exact Differentiator and Neural Network-Based Friction Compensation.

Control of an anthropomorphic manipulator using LuGre friction model - Design and experimental validation (2021)
Journal Article
Ali, K., Mehmood, A., Muhammad, I., Razzaq, S., & Iqbal, J. (2021). Control of an anthropomorphic manipulator using LuGre friction model - Design and experimental validation. Strojniški vestnik - Journal of Mechanical Engineering, 67(9), 401-410. https://doi.org/10.5545/sv-jme.2021.7258

Automation technology has been extensively recognized as an emerging field in various industrial applications. Recent breakthrough in flexible automation is primarily due to deployment of robotic arms or manipulators. Autonomy in these manipulators i... Read More about Control of an anthropomorphic manipulator using LuGre friction model - Design and experimental validation.

Fault-tolerant scheme for robotic manipulator -Nonlinear robust back-stepping control with friction compensation (2021)
Journal Article
Ali, K., Mehmood, A., & Iqbal, J. (2021). Fault-tolerant scheme for robotic manipulator -Nonlinear robust back-stepping control with friction compensation. PLoS ONE, 16(8), Article e0256491. https://doi.org/10.1371/journal.pone.0256491

Emerging applications of autonomous robots requiring stability and reliability cannot afford component failure to achieve operational objectives. Hence, identification and countermeasure of a fault is of utmost importance in mechatronics community. T... Read More about Fault-tolerant scheme for robotic manipulator -Nonlinear robust back-stepping control with friction compensation.

Operational Efficiency Improvement of PEM Fuel Cell - A Sliding Mode Based Modern Control Approach (2020)
Journal Article
Javaid, U., Mehmood, A., Arshad, A., Imtiaz, F., & Iqbal, J. (2020). Operational Efficiency Improvement of PEM Fuel Cell - A Sliding Mode Based Modern Control Approach. IEEE Access, 8, 95823-95831. https://doi.org/10.1109/ACCESS.2020.2995895

The efficiency and durability of a Proton Exchange Membrane Fuel Cell (PEMFC) can be improved with proper controller design to regulate the flow of reactants, cell stack temperature and humidity of the membrane. In this paper, sliding mode controller... Read More about Operational Efficiency Improvement of PEM Fuel Cell - A Sliding Mode Based Modern Control Approach.

Robust Integral Sliding Mode Control Design for Stability Enhancement of Under-actuated Quadcopter (2020)
Journal Article
Ullah, S., Mehmood, A., Khan, Q., Rehman, S., & Iqbal, J. (2020). Robust Integral Sliding Mode Control Design for Stability Enhancement of Under-actuated Quadcopter. International journal of control, automation and systems, 18(7), 1671-1678. https://doi.org/10.1007/s12555-019-0302-3

In this paper, a robust backstepping integral sliding mode control (RBISMC) technique is designed for the flight control of a quadcopter, which is an under-actuated nonlinear system. First, the mathematical model of this highly coupled and under-actu... Read More about Robust Integral Sliding Mode Control Design for Stability Enhancement of Under-actuated Quadcopter.

Robust Sliding Mode Control for Flexible Joint Robotic Manipulator via Disturbance Observer (2019)
Journal Article
Alam, W., Ahmad, S., Mehmood, A., & Iqbal, J. (2019). Robust Sliding Mode Control for Flexible Joint Robotic Manipulator via Disturbance Observer. Interdisciplinary Description of Complex Systems, 17(1), 85-97. https://doi.org/10.7906/indecs.17.1.11

In a flexible joint robotic manipulator, parametric variations and external disturbances result in mismatch uncertainties thus posing a great challenge in terms of manipulator’s control. This article investigates non-linear control algorithms for des... Read More about Robust Sliding Mode Control for Flexible Joint Robotic Manipulator via Disturbance Observer.

Adaptive Backstepping Based Sensor and Actuator Fault Tolerant Control of a Manipulator (2019)
Journal Article
Awan, Z. S., Ali, K., Iqbal, J., & Mehmood, A. (2019). Adaptive Backstepping Based Sensor and Actuator Fault Tolerant Control of a Manipulator. Journal of Electrical Engineering & Technology, 14(6), 2497-2504. https://doi.org/10.1007/s42835-019-00277-9

The purpose of this research is to propose and design fault tolerant control (FTC) scheme for a robotic manipulator, to increase its reliability and performance in the presence of actuator and sensor faults. To achieve the said objectives, a hybrid c... Read More about Adaptive Backstepping Based Sensor and Actuator Fault Tolerant Control of a Manipulator.

Advanced sliding mode control techniques for Inverted Pendulum: Modelling and simulation (2018)
Journal Article
Irfan, S., Mehmood, A., Razzaq, M. T., & Iqbal, J. (2018). Advanced sliding mode control techniques for Inverted Pendulum: Modelling and simulation. Engineering Science and Technology : an International Journal, 21(4), 753-759. https://doi.org/10.1016/j.jestch.2018.06.010

Numerous practical applications like robot balancing, segway and hover board riding and operation of a rocket propeller are inherently based on Inverted Pendulum (IP). The control of an IP is a sophisticated problem due to various real world phenomen... Read More about Advanced sliding mode control techniques for Inverted Pendulum: Modelling and simulation.

Optimal and Robust Control of Multi DOF Robotic Manipulator: Design and Hardware Realization (2018)
Journal Article
Ajwad, S. A., Iqbal, J., Islam, R. U., Alsheikhy, A., Almeshal, A., & Mehmood, A. (2018). Optimal and Robust Control of Multi DOF Robotic Manipulator: Design and Hardware Realization. Cybernetics and Systems, 49(1), 77-93. https://doi.org/10.1080/01969722.2017.1412905

Robots have become an integral part of industrial automation. Their ultimate role and contribution in this sector is essentially a function of the associated control strategy to ensure precision, repeatability, and reliability, particularly in an env... Read More about Optimal and Robust Control of Multi DOF Robotic Manipulator: Design and Hardware Realization.

Nonlinear control of a flexible joint robotic manipulator with experimental validation (2018)
Journal Article
Alam, W., Mehmood, A., Ali, K., Javaid, U., Alharbi, S., & Iqbal, J. (2018). Nonlinear control of a flexible joint robotic manipulator with experimental validation. Strojniški vestnik - Journal of Mechanical Engineering, 64(1), 47-55. https://doi.org/10.5545/sv-jme.2017.4786

This article addresses the design and implementation of robust nonlinear control approaches to obtain the desired trajectory tracking of a flexible joint manipulator driven with a direct-current (DC) geared motor. The nonlinear control schemes have b... Read More about Nonlinear control of a flexible joint robotic manipulator with experimental validation.

Opportunities and challenges in control of smart grids – Pakistani perspective (2016)
Journal Article
Irfan, M., Iqbal, J., Iqbal, A., Iqbal, Z., Riaz, R. A., & Mehmood, A. (2017). Opportunities and challenges in control of smart grids – Pakistani perspective. Renewable & sustainable energy reviews, 71, 652-674. https://doi.org/10.1016/j.rser.2016.12.095

With the advancement in technologies, the power requirement around the globe is tremendously increasing, putting extra loads on grids. The existing grids cannot bear that load and also do not provide the interface with Distributed Renewable Energy So... Read More about Opportunities and challenges in control of smart grids – Pakistani perspective.

Optimal v/s robust control: A study and comparison for articulated manipulator (2016)
Journal Article
Ajwad, S. A., Mehmood, A., Ullah, M. I., & Iqbal, J. (2016). Optimal v/s robust control: A study and comparison for articulated manipulator. Journal of the Balkan Tribological Association, 22(3), 2469-2475

Highly nonlinear and coupled dynamics of a robotic manipulator demands sophisticated control strategies. These strategies must have the ability to handle the uncertainties and external disturbances that can significantly deviate the system from its d... Read More about Optimal v/s robust control: A study and comparison for articulated manipulator.