Skip to main content

Research Repository

Advanced Search

Outputs (30)

Facilitating a smoother transition to renewable energy with AI (2022)
Journal Article
Chatterjee, J., & Dethlefs, N. (2022). Facilitating a smoother transition to renewable energy with AI. Patterns, 3(6), Article 100528. https://doi.org/10.1016/j.patter.2022.100528

Artificial intelligence (AI) can help facilitate wider adoption of renewable energy globally. We organized a social event for the AI and renewables community to discuss these aspects at the International Conference on Learning Representations (ICLR),... Read More about Facilitating a smoother transition to renewable energy with AI.

A Deep Learning Framework for Wind Turbine Repair Action Prediction Using Alarm Sequences and Long Short Term Memory Algorithms (2022)
Journal Article
Walker, C., Rothon, C., Aslansefat, K., Papadopoulos, Y., & Dethlefs, N. (2022). A Deep Learning Framework for Wind Turbine Repair Action Prediction Using Alarm Sequences and Long Short Term Memory Algorithms. Lecture notes in computer science, 13525 LNCS, 189-203. https://doi.org/10.1007/978-3-031-15842-1_14

With an increasing emphasis on driving down the costs of Operations and Maintenance (O &M) in the Offshore Wind (OSW) sector, comes the requirement to explore new methodology and applications of Deep Learning (DL) to the domain. Condition-based monit... Read More about A Deep Learning Framework for Wind Turbine Repair Action Prediction Using Alarm Sequences and Long Short Term Memory Algorithms.

The blessings of explainable AI in operations & maintenance of wind turbines (2021)
Thesis
Chatterjee, J. The blessings of explainable AI in operations & maintenance of wind turbines. (Thesis). University of Hull. https://hull-repository.worktribe.com/output/4223982

Wind turbines play an integral role in generating clean energy, but regularly suffer from operational inconsistencies and failures leading to unexpected downtimes and significant Operations & Maintenance (O&M) costs. Condition-Based Monitoring (CBM)... Read More about The blessings of explainable AI in operations & maintenance of wind turbines.

Deep learning with knowledge graphs for fine-grained emotion classification in text (2021)
Thesis
Schoene, A. M. Deep learning with knowledge graphs for fine-grained emotion classification in text. (Thesis). University of Hull. https://hull-repository.worktribe.com/output/4223160

This PhD thesis investigates two key challenges in the area of fine-grained emotion detection in textual data. More specifically, this work focuses on (i) the accurate classification of emotion in tweets and (ii) improving the learning of representat... Read More about Deep learning with knowledge graphs for fine-grained emotion classification in text.

Scientometric review of artificial intelligence for operations & maintenance of wind turbines: The past, present and future (2021)
Journal Article
Chatterjee, J., & Dethlefs, N. (2021). Scientometric review of artificial intelligence for operations & maintenance of wind turbines: The past, present and future. Renewable & sustainable energy reviews, 144, Article 111051. https://doi.org/10.1016/j.rser.2021.111051

Wind energy has emerged as a highly promising source of renewable energy in recent times. However, wind turbines regularly suffer from operational inconsistencies, leading to significant costs and challenges in operations and maintenance (O&M). Condi... Read More about Scientometric review of artificial intelligence for operations & maintenance of wind turbines: The past, present and future.

XAI4Wind: A Multimodal Knowledge Graph Database for Explainable Decision Support in Operations & Maintenance of Wind Turbines (2021)
Journal Article
Chatterjee, J., & Dethlefs, N. XAI4Wind: A Multimodal Knowledge Graph Database for Explainable Decision Support in Operations & Maintenance of Wind Turbines. https://doi.org/10.48550/arXiv.2012.10489. Manuscript submitted for publication

Condition-based monitoring (CBM) has been widely utilised in the wind industry for monitoring operational inconsistencies and failures in turbines, with techniques ranging from signal processing and vibration analysis to artificial intelligence (AI)... Read More about XAI4Wind: A Multimodal Knowledge Graph Database for Explainable Decision Support in Operations & Maintenance of Wind Turbines.

Hierarchical Multiscale Recurrent Neural Networks for Detecting Suicide Notes (2021)
Journal Article
Schoene, A. M., Turner, A. P., De Mel, G., & Dethlefs, N. (in press). Hierarchical Multiscale Recurrent Neural Networks for Detecting Suicide Notes. IEEE Transactions on Affective Computing, https://doi.org/10.1109/TAFFC.2021.3057105

Recent statistics in suicide prevention show that people are increasingly posting their last words online and with the unprecedented availability of textual data from social media platforms researchers have the opportunity to analyse such data. Furth... Read More about Hierarchical Multiscale Recurrent Neural Networks for Detecting Suicide Notes.

A divide-and-conquer approach to neural natural language generation from structured data (2021)
Journal Article
Dethlefs, N., Schoene, A., & Cuayáhuitl, H. (2021). A divide-and-conquer approach to neural natural language generation from structured data. Neurocomputing, 433, 300-309. https://doi.org/10.1016/j.neucom.2020.12.083

Current approaches that generate text from linked data for complex real-world domains can face problems including rich and sparse vocabularies as well as learning from examples of long varied sequences. In this article, we propose a novel divide-and-... Read More about A divide-and-conquer approach to neural natural language generation from structured data.

Deep reinforcement learning for maintenance planning of offshore vessel transfer (2020)
Presentation / Conference Contribution
Chatterjee, J., & Dethlefs, N. (2020, October). Deep reinforcement learning for maintenance planning of offshore vessel transfer. Presented at 4th International Conference on Renewable Energies Offshore (RENEW 2020), Lisbon, Portugal

Offshore wind farm operators need to make short-term decisions on planning vessel transfers to turbines for preventive or corrective maintenance. These decisions can play a pivotal role in ensuring maintenance actions are carried out in a timely and... Read More about Deep reinforcement learning for maintenance planning of offshore vessel transfer.

A Dual Transformer Model for Intelligent Decision Support for Maintenance of Wind Turbines (2020)
Presentation / Conference Contribution
Chatterjee, J., & Dethlefs, N. (2020, July). A Dual Transformer Model for Intelligent Decision Support for Maintenance of Wind Turbines. Presented at 2020 International Joint Conference on Neural Networks (IJCNN), Glasgow, UK

© 2020 IEEE. Wind energy is one of the fastest-growing sustainable energy sources in the world but relies crucially on efficient and effective operations and maintenance to generate sufficient amounts of energy and reduce downtime of wind turbines an... Read More about A Dual Transformer Model for Intelligent Decision Support for Maintenance of Wind Turbines.