Skip to main content

Research Repository

Advanced Search

Outputs (44)

Time-series machine learning for predictive optimisation of a highly efficient evaporative cooling system (2025)
Journal Article
Wang, Z., Zeng, C., Zhu, Z., Li, Y., Ma, X., & Zhao, X. (online). Time-series machine learning for predictive optimisation of a highly efficient evaporative cooling system. Building services engineering research & technology : BSER & T, https://doi.org/10.1177/01436244251315047

As data centres become integral to modern infrastructure, their energy consumption, particularly in cooling systems, presents a critical challenge for sustainability. This paper addresses this issue by applying time-series machine learning models to... Read More about Time-series machine learning for predictive optimisation of a highly efficient evaporative cooling system.

Simulation and economic analysis of an innovative indoor solar cooking system with energy storage (2023)
Journal Article
Zhou, C., Wang, Y., Li, J., Ma, X., Li, Q., Yang, M., Zhao, X., & Zhu, Y. (2023). Simulation and economic analysis of an innovative indoor solar cooking system with energy storage. Solar Energy, 263, Article 111816. https://doi.org/10.1016/j.solener.2023.111816

Solar energy technology and energy storage technology are promising to make a contribution to current energy and global climate issue. The energy demand of daily cooking is enormous, and conventional cooking methods use gas or electricity with large... Read More about Simulation and economic analysis of an innovative indoor solar cooking system with energy storage.

Real life test of a novel super performance dew point cooling system in operational live data centre (2023)
Journal Article
Ma, X., Zeng, C., Zhu, Z., Zhao, X., Xiao, X., Akhlaghi, Y. G., & Shittu, S. (2023). Real life test of a novel super performance dew point cooling system in operational live data centre. Applied energy, 348, Article 121483. https://doi.org/10.1016/j.apenergy.2023.121483

This paper presents the development and application of a super performance dew point cooling technology for data centres. The novel super performance dew point cooler showed considerably improved energy saving and carbon reduction for data centre coo... Read More about Real life test of a novel super performance dew point cooling system in operational live data centre.

A proof-of-concept study of a novel ventilation heat recovery vapour injection air source heat pump (2022)
Journal Article
Fan, Y., Li, J., Zhao, X., Myers, S., Cheng, Y., Yu, M., Golizadeh Akhlaghi, Y., Ma, X., & Yu, S. (2022). A proof-of-concept study of a novel ventilation heat recovery vapour injection air source heat pump. Energy Conversion and Management, 256, Article 115404. https://doi.org/10.1016/j.enconman.2022.115404

Conventional air source heat pumps suffer from frosting in winter and consume a large amount of electricity for defrosting. Meanwhile, ventilation heat recovery is an important approach to energy saving in buildings. This paper conducts a proof-of-co... Read More about A proof-of-concept study of a novel ventilation heat recovery vapour injection air source heat pump.

Combined Rankine Cycle and dew point cooler for energy efficient power generation of the power plants - A review and perspective study (2021)
Journal Article
Ma, X., Zhao, X., Zhang, Y., Liu, K., Yang, H., Li, J., Akhlaghi, Y. G., Liu, H., Han, Z., & Liu, Z. (2022). Combined Rankine Cycle and dew point cooler for energy efficient power generation of the power plants - A review and perspective study. Energy, 238, Article 121688. https://doi.org/10.1016/j.energy.2021.121688

The Rankine Cycle is a thermodynamic process widely applied to power plants such as coal-fired power plants or nuclear reactors. The thermal efficiency of a power plant is largely dependent upon the temperature difference between a heat source and a... Read More about Combined Rankine Cycle and dew point cooler for energy efficient power generation of the power plants - A review and perspective study.

Design and analysis of a novel dual source vapor injection heat pump using exhaust and ambient air (2020)
Journal Article
Li, J., Fan, Y., Zhao, X., Bai, X., Zhou, J., Badiei, A., Myers, S., & Ma, X. (2021). Design and analysis of a novel dual source vapor injection heat pump using exhaust and ambient air. Energy and Built Environment, https://doi.org/10.1016/j.enbenv.2020.11.004

A novel dual source vapor injection heat pump (DSVIHP) using exhaust and ambient air is proposed. The air exhausted from the building first releases energy to the medium-pressure evaporator and is then mixed with the ambient air to heat the low-press... Read More about Design and analysis of a novel dual source vapor injection heat pump using exhaust and ambient air.

Performance assessment and optimisation of a novel guideless irregular dew point cooler using artificial intelligence (2020)
Thesis
Akhlagi, Y. G. Performance assessment and optimisation of a novel guideless irregular dew point cooler using artificial intelligence. (Thesis). University of Hull. https://hull-repository.worktribe.com/output/4222977

Air Conditioners (ACs) are a vital need in modern buildings to provide comfortable indoor air for the occupants. Several alternatives for the traditional coolers are introduced to improve the cooling efficiency but among them, Evaporative Coolers (EC... Read More about Performance assessment and optimisation of a novel guideless irregular dew point cooler using artificial intelligence.

Hourly performance forecast of a dew point cooler using explainable Artificial Intelligence and evolutionary optimisations by 2050 (2020)
Journal Article
Golizadeh Akhlaghi, Y., Aslansefat, K., Zhao, X., Sadati, S., Badiei, A., Xiao, X., Shittu, S., Fan, Y., & Ma, X. (2021). Hourly performance forecast of a dew point cooler using explainable Artificial Intelligence and evolutionary optimisations by 2050. Applied energy, 281, Article 116062. https://doi.org/10.1016/j.apenergy.2020.116062

The empirical success of the Artificial Intelligence (AI), has enhanced importance of the transparency in black box Machine Learning (ML) models. This study pioneers in developing an explainable and interpretable Deep Neural Network (DNN) model for a... Read More about Hourly performance forecast of a dew point cooler using explainable Artificial Intelligence and evolutionary optimisations by 2050.

Investigation of a novel hybrid photovoltaic-thermoelectric generator system (2020)
Thesis
Shittu, S. Investigation of a novel hybrid photovoltaic-thermoelectric generator system. (Thesis). University of Hull. https://hull-repository.worktribe.com/output/4222856

Effective thermal management of photovoltaic is essential for improving its conversion efficiency and increasing its life span. Photovoltaics can convert the ultraviolet and visible regions of the solar spectrum into electrical energy directly while... Read More about Investigation of a novel hybrid photovoltaic-thermoelectric generator system.

Economic and environmental analysis of a novel rural house heating and cooling system using a solar-assisted vapour injection heat pump (2020)
Journal Article
Fan, Y., Zhao, X., Li, J., Li, G., Myers, S., Cheng, Y., Badiei, A., Yu, M., Golizadeh Akhlaghi, Y., Shittu, S., & Ma, X. (2020). Economic and environmental analysis of a novel rural house heating and cooling system using a solar-assisted vapour injection heat pump. Applied energy, 275, Article 115323. https://doi.org/10.1016/j.apenergy.2020.115323

An efficient low-carbon system is proposed to meet the heating and cooling demands of rural houses in cold regions. Mini-channel solar panels incorporating a novel multiple-throughout-flowing loop are used for heat collection, whilst a vapour injecti... Read More about Economic and environmental analysis of a novel rural house heating and cooling system using a solar-assisted vapour injection heat pump.