Skip to main content

Research Repository

Advanced Search

Outputs (517)

Exploring the superior mild temperature performance of nickel-infused fibrous titania silica for enhanced dry reforming of methane (2024)
Journal Article
Alhassan, M., Jalil, A. A., Bahari, M. B., Hambali, H. U., Tran, T. V., Zein, S. H., & Rajendran, S. (online). Exploring the superior mild temperature performance of nickel-infused fibrous titania silica for enhanced dry reforming of methane. International Journal of Hydrogen Energy, https://doi.org/10.1016/j.ijhydene.2024.09.062

Carbon (IV) oxide (CO2) and methane (CH4) contribute significantly to greenhouse gas emissions and global warming. One potential approach for reducing their environmental impact is transforming these gases into synthesis gas (CO + H2). This study ill... Read More about Exploring the superior mild temperature performance of nickel-infused fibrous titania silica for enhanced dry reforming of methane.

Electrochemical Goniometry: Keystone Reactivity at the Three-Phase Boundary (2024)
Journal Article
Varley, T. S., Lawrence, N. S., & Wadhawan, J. D. (online). Electrochemical Goniometry: Keystone Reactivity at the Three-Phase Boundary. Journal of Solid State Electrochemistry, https://doi.org/10.1007/s10008-024-05932-4

Contact angles of liquid, spherical cap droplets immobilised on an electrode surface and bathed by a fluid are important, quantifiable measures of the liquid/fluid interfacial tension. Optical goniometry, even if computer assisted, suffers when the c... Read More about Electrochemical Goniometry: Keystone Reactivity at the Three-Phase Boundary.

Comparative energy and exergy analysis of ortho-para hydrogen and non-ortho-para hydrogen conversion in hydrogen liquefaction (2024)
Journal Article
Ahmad, A., Oko, E., & Ibhadon, A. (2024). Comparative energy and exergy analysis of ortho-para hydrogen and non-ortho-para hydrogen conversion in hydrogen liquefaction. International Journal of Hydrogen Energy, 78, 991-1003. https://doi.org/10.1016/j.ijhydene.2024.06.368

This study reports the comparative energy and exergy analysis of ortho-para hydrogen and non-ortho-para hydrogen conversion in hydrogen liquefaction process. Two cases were simulated, case A – hydrogen liquefaction with ortho-parahydrogen conversion... Read More about Comparative energy and exergy analysis of ortho-para hydrogen and non-ortho-para hydrogen conversion in hydrogen liquefaction.

Repurposing lignin rich biorefinery waste streams into the next generation of sustainable solid fuels (2024)
Journal Article
Taylor, M. J., Hornsby, K., Cheah, K. W., Hurst, P., Walker, S., & Skoulou, V. (2024). Repurposing lignin rich biorefinery waste streams into the next generation of sustainable solid fuels. Sustainable Chemistry for the Environment, 7, Article 100123. https://doi.org/10.1016/j.scenv.2024.100123

Value added lignin rich waste sludges from biorefinery processes are, as yet untapped valuable feedstocks that can be reformed into clean, high quality solid fuels. By water washing sludges produced from base hydrolyzed waste, a material stripped of... Read More about Repurposing lignin rich biorefinery waste streams into the next generation of sustainable solid fuels.

Investigation of Monovalent Li and Divalent Ni Doping in Co3O4 for Enhanced Hydroelectric Cell Performance (2024)
Journal Article
Kashyap, R., Chauhan, A., Kaur, G., Chaudhary, G. R., Taylor, M. J., & Sharma, R. K. (2024). Investigation of Monovalent Li and Divalent Ni Doping in Co3O4 for Enhanced Hydroelectric Cell Performance. Physica B: Condensed Matter, 688, Article 416150. https://doi.org/10.1016/j.physb.2024.416150

The hydroelectric cell (HEC) produces green power at room temperature using non-photocatalytic water splitting. To achieve this goal, pure Ni (Nickel) and lithium (Li) substituted in cobalt oxide (Co3O4), a mesoporous oxygen-deficient material, is in... Read More about Investigation of Monovalent Li and Divalent Ni Doping in Co3O4 for Enhanced Hydroelectric Cell Performance.

Woody biomass waste derivatives in decarbonised blast furnace ironmaking process (2024)
Journal Article
Wang, R. Q., Jiang, L., Wang, Y. D., Font-Palma, C., Skoulou, V., & Roskilly, A. P. (2024). Woody biomass waste derivatives in decarbonised blast furnace ironmaking process. Renewable & sustainable energy reviews, 199, Article 114465. https://doi.org/10.1016/j.rser.2024.114465

Modern ironmaking process relies significantly on fossil-related fuels, which ultimately results in the enormous CO2 emitted into the atmosphere. Biomass of plant origin, as a carbon-neutral energy source, has been considered as an alternative to fos... Read More about Woody biomass waste derivatives in decarbonised blast furnace ironmaking process.

In Silico and invitro modelling of chronic wounds to improve our understanding of wound biomechanics and to test novel medical devices (2024)
Thesis
Hendon, A. C. In Silico and invitro modelling of chronic wounds to improve our understanding of wound biomechanics and to test novel medical devices. (Thesis). University of Hull. https://hull-repository.worktribe.com/output/4703110

Negative pressure wound therapy (NPWT) is a widely used system that aids the healing of chronic wounds through the application of sub-atmospheric pressure. The effectiveness of this method is widely recognised, however the mechanisms behind this are... Read More about In Silico and invitro modelling of chronic wounds to improve our understanding of wound biomechanics and to test novel medical devices.

From textile waste to carbon nanomaterials for offshore wind turbine blades (2023)
Thesis
Marsden, H. From textile waste to carbon nanomaterials for offshore wind turbine blades. (Thesis). University of Hull. https://hull-repository.worktribe.com/output/4459343

The aim of this research was to determine the feasibility of carbon production from the pyrolysis of textile waste, seeking a way of increasing the sustainability of “fast fashion” and recycling the 92 million tonnes of textile waste entering landfil... Read More about From textile waste to carbon nanomaterials for offshore wind turbine blades.

Synthesis of graphene-encapsulated Fe3C/Fe catalyst supported on Sporopollenin exine capsules, and its use for the reverse water gas shift reaction (2023)
Journal Article
Malik, W., Tafoya, J. . P. V., Doszczeczko, S., Jorge Sobrido, A. B., Skoulou, V., Boa, A. N., …Volpe, R. (in press). Synthesis of graphene-encapsulated Fe3C/Fe catalyst supported on Sporopollenin exine capsules, and its use for the reverse water gas shift reaction. ACS Sustainable Chemistry and Engineering,

Bioderived materials have emerged as sustainable catalyst supports for several heterogeneous reactions owing to their naturally occurring hierarchal pore size distribution, high surface area, and thermal and chemical stability. We utilize sporopollen... Read More about Synthesis of graphene-encapsulated Fe3C/Fe catalyst supported on Sporopollenin exine capsules, and its use for the reverse water gas shift reaction.