Skip to main content

Research Repository

Advanced Search

Outputs (31)

Pd doped mesoporous biochar catalysts for the selective hydrogenation of alkynes to alkenes. (2024)
Thesis
Hornsby, K. Pd doped mesoporous biochar catalysts for the selective hydrogenation of alkynes to alkenes. (Thesis). University of Hull. https://hull-repository.worktribe.com/output/4866518

The quest to develop Pd doped, sustainable catalysts for the selective hydrogenation of phenylacetylene resulted in the synthesis of two families of materials. Derived from lignocellulosic biomass residues, specifically barley straw, bulk and mesopor... Read More about Pd doped mesoporous biochar catalysts for the selective hydrogenation of alkynes to alkenes..

Repurposing lignin rich biorefinery waste streams into the next generation of sustainable solid fuels (2024)
Journal Article
Taylor, M. J., Hornsby, K., Cheah, K. W., Hurst, P., Walker, S., & Skoulou, V. (2024). Repurposing lignin rich biorefinery waste streams into the next generation of sustainable solid fuels. Sustainable Chemistry for the Environment, 7, Article 100123. https://doi.org/10.1016/j.scenv.2024.100123

Value added lignin rich waste sludges from biorefinery processes are, as yet untapped valuable feedstocks that can be reformed into clean, high quality solid fuels. By water washing sludges produced from base hydrolyzed waste, a material stripped of... Read More about Repurposing lignin rich biorefinery waste streams into the next generation of sustainable solid fuels.

Investigation of Monovalent Li and Divalent Ni Doping in Co3O4 for Enhanced Hydroelectric Cell Performance (2024)
Journal Article
Kashyap, R., Chauhan, A., Kaur, G., Chaudhary, G. R., Taylor, M. J., & Sharma, R. K. (2024). Investigation of Monovalent Li and Divalent Ni Doping in Co3O4 for Enhanced Hydroelectric Cell Performance. Physica B: Condensed Matter, 688, Article 416150. https://doi.org/10.1016/j.physb.2024.416150

The hydroelectric cell (HEC) produces green power at room temperature using non-photocatalytic water splitting. To achieve this goal, pure Ni (Nickel) and lithium (Li) substituted in cobalt oxide (Co3O4), a mesoporous oxygen-deficient material, is in... Read More about Investigation of Monovalent Li and Divalent Ni Doping in Co3O4 for Enhanced Hydroelectric Cell Performance.

Photocatalytic Hydrolysis─A Sustainable Option for the Chemical Upcycling of Polylactic Acid (2023)
Journal Article
Garratt, A., Nguyen, K., Brooke, A., Taylor, M. J., & Francesconi, M. G. (2023). Photocatalytic Hydrolysis─A Sustainable Option for the Chemical Upcycling of Polylactic Acid. ACS Environmental Au, 3(6), 342–347. https://doi.org/10.1021/acsenvironau.3c00040

Plastic waste is a critical global issue, yet current strategies to avoid committing plastic waste to landfills include incineration, gasification, or pyrolysis high carbon emitting and energy consuming approaches. However, plastic waste can become a... Read More about Photocatalytic Hydrolysis─A Sustainable Option for the Chemical Upcycling of Polylactic Acid.

Elucidation of single atom catalysts for energy and sustainable chemical production: Synthesis, characterization and frontier science (2023)
Journal Article
Loy, A. C. M., Teng, S. Y., How, B. S., Zhang, X., Cheah, K. W., Butera, V., Leong, W. D., Chin, B. L. F., Yiin, C. L., Taylor, M. J., & Kyriakou, G. (2023). Elucidation of single atom catalysts for energy and sustainable chemical production: Synthesis, characterization and frontier science. Progress in Energy and Combustion Science, 96, Article 101074. https://doi.org/10.1016/j.pecs.2023.101074

The emergence of single atom sites as a frontier research area in catalysis has sparked extensive academic and industrial interest, especially for energy, environmental and chemicals production processes. Single atom catalysts (SACs) have shown remar... Read More about Elucidation of single atom catalysts for energy and sustainable chemical production: Synthesis, characterization and frontier science.

Evaluating the pre-treatment protocol required to produce an effective carbonized waste adsorbent for organic pollution control (2023)
Journal Article
Priyanka, Vashisht, D., Taylor, M. J., & Mehta, S. K. (2023). Evaluating the pre-treatment protocol required to produce an effective carbonized waste adsorbent for organic pollution control. Frontiers in Environmental Science, 11, Article 1224388. https://doi.org/10.3389/fenvs.2023.1224388

With the goal of fostering the circular economy, the present work was devised to minimize and manage agricultural waste by transforming it into biochar; a versatile dye removal adsorbent. Waterways across the globe are frequently fouled and contamina... Read More about Evaluating the pre-treatment protocol required to produce an effective carbonized waste adsorbent for organic pollution control.

Role of deep eutectic solvents as pretreatment medium for biomass transformation (2022)
Book Chapter
Yiin, C. L., Yap, K. L., Mahmod, D. S. A., Chin, B. L. F., Lock, S. S. M., Chan, Y. H., Cheah, K. W., Taylor, M. J., & Kyriakou, G. (2022). Role of deep eutectic solvents as pretreatment medium for biomass transformation. In A. Pandey, B. Tiwari, A. Pandey, & S. Yusup (Eds.), Current Developments in Biotechnology and Bioengineering : Deep Eutectic Solvent Fund Emerging Applications (139-160). Elsevier. https://doi.org/10.1016/B978-0-323-99905-2.00013-3

Machine learning–assisted CO2 utilization in the catalytic dry reforming of hydrocarbons: Reaction pathways and multicriteria optimization analyses (2021)
Journal Article
Lim, J. Y., Loy, A. C. M., Alhazmi, H., Fui, B. C. L., Cheah, K. W., Taylor, M. J., Kyriakou, G., & Yoo, C. K. (in press). Machine learning–assisted CO2 utilization in the catalytic dry reforming of hydrocarbons: Reaction pathways and multicriteria optimization analyses. International journal of energy research, https://doi.org/10.1002/er.7565

The catalytic dry reforming (DR) process is a clean approach to transform CO2 into H2 and CO-rich synthetic gas that can be used for various energy applications such as Fischer–Tropsch fuels production. A novel framework is proposed to determine the... Read More about Machine learning–assisted CO2 utilization in the catalytic dry reforming of hydrocarbons: Reaction pathways and multicriteria optimization analyses.

Overview of biomass conversion to biofuels (2021)
Book Chapter
Cheah, K. W., Taylor, M. J., Evans, G., Samson, A., & Skoulou, V. (2022). Overview of biomass conversion to biofuels. In S. Yusup, & N. A. Rashidi (Eds.), Value chain of Biofuels (1-48). Elsevier. https://doi.org/10.1016/B978-0-12-824388-6.00007-5

This chapter introduces the main biomass conversion routes to biofuels currently available in industry. It begins with a general comparison between first- and second-generation lignocellulosic biomass feedstocks, and the lessons learned by utilizing... Read More about Overview of biomass conversion to biofuels.

Support induced effects on the ir nanoparticles activity, selectivity and stability performance under CO<inf>2</inf> reforming of methane (2021)
Journal Article
Nikolaraki, E., Goula, G., Panagiotopoulo, P., Taylor, M. J., Kousi, K., Kyriakou, G., Kondarides, D. I., Lambert, R. M., & Yentekakis, I. V. (2021). Support induced effects on the ir nanoparticles activity, selectivity and stability performance under CO2 reforming of methane. Nanomaterials, 11(11), Article 2880. https://doi.org/10.3390/nano11112880

The production of syngas (H2 and CO)—a key building block for the manufacture of liquid energy carriers, ammonia and hydrogen—through the dry (CO2 −) reforming of methane (DRM) continues to gain attention in heterogeneous catalysis, renewable energy... Read More about Support induced effects on the ir nanoparticles activity, selectivity and stability performance under CO<inf>2</inf> reforming of methane.