Skip to main content

Research Repository

Advanced Search

Outputs (21)

Ikaite formation in streams affected by steel waste leachate: First report and potential impact on contaminant dynamics (2023)
Journal Article
Bastianini, L., Rogerson, M., Brasier, A., Prior, T. J., Hardman, K., Dempsey, E., Bird, A., & Mayes, W. M. (2024). Ikaite formation in streams affected by steel waste leachate: First report and potential impact on contaminant dynamics. Chemical Geology, 644, Article 121842. https://doi.org/10.1016/j.chemgeo.2023.121842

Highly alkaline (pH 9–12) waters can arise from a range of globally significant and environmentally impactful industrial processes such as lime, steel and cement production, alumina refining and energy generation (e.g. combustion ashes). Such residue... Read More about Ikaite formation in streams affected by steel waste leachate: First report and potential impact on contaminant dynamics.

Measurements In Geochemical Carbon Dioxide Removal 2023 1st Edition (2023)
Report
Campbell, J. S., Bastianini, L., Buckman, J., Bullock, L., Foteinis, S., Furey, V., Hamilton, J., Harrington, K., Hawrot, O. K., Holdship, P., Knapp, W. J., Maesano, C. N., Mayes, W. M., Pogge von Strandmann, P. A., Reershemius, T., Margaret Rosair, G., Sturgeon, F., Turvey, C., Wilson, S., & Renforth, P. (2023). Measurements In Geochemical Carbon Dioxide Removal 2023 1st Edition. Heriot Watt University: Heriot Watt University

Geochemical carbon dioxide removal (CDR) technologies capture and store carbon dioxide (CO2) from the atmosphere using alkaline materials that are rich in calcium (Ca) and magnesium (Mg). Alkaline materials include natural rocks such as basalt, indus... Read More about Measurements In Geochemical Carbon Dioxide Removal 2023 1st Edition.

Prioritised Coastal Legacy Waste Dataset (England and Wales) (2022)
Data
Riley, A., Amezaga, J., Burke, I., Byrne, P., Cooper, N., Crane, R., Comber, S., Gandy, C., Hudson-Edwards, K., Jennings, E., Lewis, E., Lofts, S., MacDonald, J., Malcolm, H., Mayes, W., Onnis, P., Olszewska, J., Spears, B., & Jarvis, A. (2022). Prioritised Coastal Legacy Waste Dataset (England and Wales). [Data]

Supporting data for:
Riley et al., 2022. Incorporating conceptual site models into national-scale environmental risk assessments for legacy waste in the coastal zone. Frontiers in Environmental Science, 10:1045482.

CSV dataset of legacy landfill... Read More about Prioritised Coastal Legacy Waste Dataset (England and Wales).

What are the different styles of calcite precipitation within a hyperalkaline leachate? A sedimentological Anthropocene case study (2021)
Journal Article
Bastianini, L., Rogerson, M., Mercedes-Martín, R., Prior, T. J., & Mayes, W. M. (in press). What are the different styles of calcite precipitation within a hyperalkaline leachate? A sedimentological Anthropocene case study. The Depositional Record, https://doi.org/10.1002/dep2.168

This study aims to compare the fabrics of anthropogenic carbonates downstream of lime and steel disposal sites with models of carbonate precipitation from natural systems to elucidate potential drivers, precipitation mechanisms, morphological similar... Read More about What are the different styles of calcite precipitation within a hyperalkaline leachate? A sedimentological Anthropocene case study.

Integrating Remediation and Resource Recovery of Industrial Alkaline Wastes: Case Studies of Steel and Alumina Industry Residues (2019)
Book Chapter
Gomes, H. I., Rogerson, M., Courtney, R., & Mayes, W. M. (2020). Integrating Remediation and Resource Recovery of Industrial Alkaline Wastes: Case Studies of Steel and Alumina Industry Residues. In Resource recovery from wastes: towards a circular economy (168-191). Royal Society of Chemistry. https://doi.org/10.1039/9781788016353-00168

With an estimated annual production of two billion tonnes globally, alkaline industrial wastes can be considered both major global waste streams, and materials that offer significant options for potential resource recovery. Alkaline wastes are usuall... Read More about Integrating Remediation and Resource Recovery of Industrial Alkaline Wastes: Case Studies of Steel and Alumina Industry Residues.

What Causes Carbonates to Form “Shrubby” Morphologies? An Anthropocene Limestone Case Study (2019)
Journal Article
Bastianini, L., Rogerson, M., Mercedes-Martín, R., Prior, T. J., Cesar, E. A., & Mayes, W. M. (2019). What Causes Carbonates to Form “Shrubby” Morphologies? An Anthropocene Limestone Case Study. Frontiers in Earth Science, 7, Article 236. https://doi.org/10.3389/feart.2019.00236

The South Atlantic Aptian “Pre-Salt” shrubby carbonate successions offshore Brazil and Angola are of major interest due to their potential hydrocarbon accumulations. Although the general sedimentology of these deposits is widely recognized to be with... Read More about What Causes Carbonates to Form “Shrubby” Morphologies? An Anthropocene Limestone Case Study.

Constructed wetlands for steel slag leachate management: Partitioning of arsenic, chromium, and vanadium in waters, sediments, and plants (2019)
Journal Article
Gomes, H., Mayes, W. M., Whitby, P., & Rogerson, M. (2019). Constructed wetlands for steel slag leachate management: Partitioning of arsenic, chromium, and vanadium in waters, sediments, and plants. Journal of environmental management, 243, 30-38. https://doi.org/10.1016/j.jenvman.2019.04.127

© 2019 The Authors Constructed wetlands can treat highly alkaline leachate resulting from the weathering of steel slag before reuse (e.g. as aggregate)or during disposal in repositories and legacy sites. This study aimed to assess how metal(loid)s s... Read More about Constructed wetlands for steel slag leachate management: Partitioning of arsenic, chromium, and vanadium in waters, sediments, and plants.

Optimization Routes for the Bioleaching of MSWI Fly and Bottom Ashes Using Microorganisms Collected from a Natural System (2019)
Journal Article
Funari, V., Gomes, H. I., Cappelletti, M., Fedi, S., Dinelli, E., Rogerson, M., Mayes, W. M., & Rovere, M. (2019). Optimization Routes for the Bioleaching of MSWI Fly and Bottom Ashes Using Microorganisms Collected from a Natural System. Waste and biomass valorization, 10(12), 3833-3842. https://doi.org/10.1007/s12649-019-00688-9

This paper presents a route for the treatment of MSWI fly (FA) and bottom ashes (BA) using microorganisms to critically assess whether bioleaching is within reach of effective industrial application. The leaching of metals from BA and FA was investig... Read More about Optimization Routes for the Bioleaching of MSWI Fly and Bottom Ashes Using Microorganisms Collected from a Natural System.

Leaching behaviour of co-disposed steel making wastes: Effects of aeration on leachate chemistry and vanadium mobilisation (2018)
Journal Article
Hobson, A. J., Stewart, D. I., Mortimer, R. J., Mayes, W. M., Rogerson, M., & Burke, I. T. (2018). Leaching behaviour of co-disposed steel making wastes: Effects of aeration on leachate chemistry and vanadium mobilisation. Waste Management, 81, 1-10. https://doi.org/10.1016/j.wasman.2018.09.046

Steelmaking wastes stored in landfill, such as slag and spent refractory liners, are often enriched in toxic trace metals (including V). These may become mobile in highly alkaline leachate generated during weathering. Fresh steelmaking waste was char... Read More about Leaching behaviour of co-disposed steel making wastes: Effects of aeration on leachate chemistry and vanadium mobilisation.

Options for managing alkaline steel slag leachate: A life cycle assessment (2018)
Journal Article
Gomes, H. I., Mayes, W. M., Baxter, H. A., Jarvis, A. P., Burke, I. T., Stewart, D. I., & Rogerson, M. (2018). Options for managing alkaline steel slag leachate: A life cycle assessment. Journal of cleaner production, 202, 401-412. https://doi.org/10.1016/j.jclepro.2018.08.163

Management of steel slag (a major by-product of the steel industry) includes the treatment of highly alkaline leachate (pH > 11.5) from rainwater infiltration of slag deposits to prevent adverse impact upon surface or ground waters. This study aims t... Read More about Options for managing alkaline steel slag leachate: A life cycle assessment.