Skip to main content

Research Repository

Advanced Search

Outputs (15)

Effect of hydro-climate variation on biofilm dynamics and its impact in intertidal environments (2022)
Journal Article
Bastianon, E., Hope, J. A., Dorrell, R. M., & Parsons, D. R. (2022). Effect of hydro-climate variation on biofilm dynamics and its impact in intertidal environments. Earth surface dynamics European Geosciences Union, 10(6), 1115-1140. https://doi.org/10.5194/esurf-10-1115-2022

Shallow tidal environments are very productive ecosystems but are sensitive to environmental changes and sea level rise. Bio-morphodynamic control of these environments is therefore a crucial consideration; however, the effect of small-scale biologic... Read More about Effect of hydro-climate variation on biofilm dynamics and its impact in intertidal environments.

Rapid megaflood-triggered base-level rise on Mars (2022)
Journal Article
Ahmed, J., Peakall, J., Balme, M., & Parsons, D. R. (2023). Rapid megaflood-triggered base-level rise on Mars. Geology, 51(1), 28-32. https://doi.org/10.1130/G50277.1

The existence of ancient fluvial systems on Mars is widely accepted, but little is known about how quickly they formed, or what environmental conditions controlled their evolution. We analyzed a sequence of well-preserved inner-bank bar deposits with... Read More about Rapid megaflood-triggered base-level rise on Mars.

Turbulence modulation in non-uniform and unsteady clay suspension flows (2022)
Thesis
de Vet, M. Turbulence modulation in non-uniform and unsteady clay suspension flows. (Thesis). University of Hull. https://hull-repository.worktribe.com/output/4240676

Cohesive sediment is common within natural environments, such as rivers, estuaries, shallow seas and deep oceans. High-magnitude, low-frequency events, such as storms, floods, and post-wildfire erosion, which occur more often due to climate change, c... Read More about Turbulence modulation in non-uniform and unsteady clay suspension flows.

Carbon and sediment fluxes inhibited in the submarine Congo Canyon by landslide-damming (2022)
Journal Article
Pope, E. L., Heijnen, M., Talling, P., Jacinto, R. S., Gaillot, A., Baker, M., Hage, S., Hasenhündl, M., Heerema, C., McGhee, C., Ruffell, S., Simmons, S. M., Cartigny, M., Clare, M., Dennielou, B., Parsons, D. R., Peirce, C., & Urlaub, M. (in press). Carbon and sediment fluxes inhibited in the submarine Congo Canyon by landslide-damming. Nature Geoscience, https://doi.org/10.1038/s41561-022-01017-x

Landslide-dams, which are often transient, can strongly affect the geomorphology, and sediment and geochemical fluxes, within subaerial fluvial systems. The potential occurrence and impact of analogous landslide-dams in submarine canyons has, however... Read More about Carbon and sediment fluxes inhibited in the submarine Congo Canyon by landslide-damming.

Microwave-Assisted Hydrothermal Carbonisation of Waste Biomass: The Effect of Process Conditions on Hydrochar Properties (2022)
Journal Article
Holliday, M. C., Parsons, D. R., & Zein, S. H. (2022). Microwave-Assisted Hydrothermal Carbonisation of Waste Biomass: The Effect of Process Conditions on Hydrochar Properties. Processes, 10(9), Article 1756. https://doi.org/10.3390/pr10091756

Hydrochars are an alternative form of biochar produced by hydrothermal carbonisation (HTC), a potentially cheaper and greener method. In this paper, the effect of multiple variables on hydrochar properties was investigated. Waste biomass was converte... Read More about Microwave-Assisted Hydrothermal Carbonisation of Waste Biomass: The Effect of Process Conditions on Hydrochar Properties.

Longest sediment flows yet measured show how major rivers connect efficiently to deep sea (2022)
Journal Article
Talling, P. J., Baker, M. L., Pope, E. L., Ruffell, S. C., Jacinto, R. S., Heijnen, M. S., Hage, S., Simmons, S. M., Hasenhündl, M., Heerema, C. J., McGhee, C., Apprioual, R., Ferrant, A., Cartigny, M. J., Parsons, D. R., Clare, M. A., Tshimanga, R., Trigg, M. A., Cula, C. A., Faria, R., …Hilton, R. J. (2022). Longest sediment flows yet measured show how major rivers connect efficiently to deep sea. Nature communications, 13(1), Article 4193. https://doi.org/10.1038/s41467-022-31689-3

Here we show how major rivers can efficiently connect to the deep-sea, by analysing the longest runout sediment flows (of any type) yet measured in action on Earth. These seafloor turbidity currents originated from the Congo River-mouth, with one flo... Read More about Longest sediment flows yet measured show how major rivers connect efficiently to deep sea.

On the transport mechanisms, ecological interactions and fate of microplastics in aquatic environments (2022)
Thesis
Mendrik, F. On the transport mechanisms, ecological interactions and fate of microplastics in aquatic environments. (Thesis). University of Hull. https://hull-repository.worktribe.com/output/4224632

Microplastics are now persistent throughout aquatic systems globally and can cause a range of ecological damage. The transport of microplastics is influenced by the polymer type, in addition to physical, biological, and chemical gradients plastic par... Read More about On the transport mechanisms, ecological interactions and fate of microplastics in aquatic environments.

Agricultural Pea Waste as a Low-Cost Pollutant Biosorbent for Methylene Blue Removal: Adsorption Kinetics, Isotherm And Thermodynamic Studies (2022)
Journal Article
Holliday, M. C., Parsons, D. R., & Zein, S. H. (2022). Agricultural Pea Waste as a Low-Cost Pollutant Biosorbent for Methylene Blue Removal: Adsorption Kinetics, Isotherm And Thermodynamic Studies. Biomass Conversion and Biorefinery, https://doi.org/10.1007/s13399-022-02865-8

Biosorbents are an alternative pollutant adsorbent, usually sourced from waste biomass and requiring little to no treatment. This makes them cheaper than conventional adsorbents. In this paper, green pea (Pisum sativum) haulm was used as a biosorbent... Read More about Agricultural Pea Waste as a Low-Cost Pollutant Biosorbent for Methylene Blue Removal: Adsorption Kinetics, Isotherm And Thermodynamic Studies.

Immersive storytelling and the power of using 360 to amplify the experiences, agency and action of children and young people facing flood risk (2022)
Presentation / Conference Contribution
Parsons, K. J., Lloyd Williams, A., Skinner, C., & Parsons, D. R. (2022, May). Immersive storytelling and the power of using 360 to amplify the experiences, agency and action of children and young people facing flood risk. Paper presented at European Geosciences Union, Vienna, Austria

Flood hazard is projected to at least double by 2050 as a consequence of the impacts of climate change, meaning many more societies and communities will need to be able to mitigate and adapt to the resultant increase in flood risk.

One often overl... Read More about Immersive storytelling and the power of using 360 to amplify the experiences, agency and action of children and young people facing flood risk.

First source-to-sink monitoring shows dense head controls sediment flux and runout in turbidity currents (2022)
Journal Article
Pope, E. L., Cartigny, M. J., Clare, M. A., Talling, P. J., Lintern, D. G., Vellinga, A., Hage, S., Açikalin, S., Bailey, L., Chapplow, N., Chen, Y., Eggenhuisen, J. T., Hendry, A., Heerema, C. J., Heijnen, M., Hubbard, S. M., Hunt, J. E., McGhee, C., Parsons, D. R., Simmons, S. M., …Vendettuoli, D. (2022). First source-to-sink monitoring shows dense head controls sediment flux and runout in turbidity currents. Science Advances, 8(20), eabj3220. https://doi.org/10.1126/sciadv.abj3220

Until recently, despite being one of the most important sediment transport phenomena on Earth, few direct measurements of turbidity currents existed. Consequently, their structure and evolution were poorly understood, particularly whether they are de... Read More about First source-to-sink monitoring shows dense head controls sediment flux and runout in turbidity currents.