Nicola Baker
Comparison of attraction, entrance and passage of downstream migrant American eels (Anguilla rostrata) through airlift and siphon deep entrance bypass systems
Baker, Nicola; Haro, Alex; Watten, Barnaby; Noreika, John; Bolland, Jonathan D.
Authors
Abstract
© 2018 Downstream migrating anguillid eels face many barriers including turbines and pumps at impoundments for water abstraction, power generation and water level control, when attempting to exit the freshwater catchment to reach spawning grounds. Multiple eel species worldwide are facing different levels of endangerment and alleviating the impacts of barriers to migration is essential to allow completion of the life cycle. Deep bypass systems with entrances located near the riverbed hold some promise for increased effectiveness compared to traditional downstream guidance and bypass facilities with entrances near the surface, as eels typically occupy the bottom of the water column. Here we evaluate two deep entrance bypass designs; an airlift (the Conte Airlift) and a conventional gravity siphon of the same entrance dimensions. Tests were performed using migratory silver-phase American eels (Anguilla rostrata), at night, in a simulated forebay environment. Passage performance was monitored over a 3 h test period using both PIT (passive integrated transponder) tag and video recording equipment. Entrance velocity was fixed at 1.2 m s−1 in each of 8 test runs with cohort size fixed in six runs at 14 and in two runs at 42. Test eels readily located, entered and passed both bypass designs. Differences in performance metrics between the airlift and siphon were not statistically significant (P > 0.05) with linked mean values of 74.5%, 90.5% and 100%, respectively. Eel length did not affect passage speed (P > 0.05) or slip ratio, i.e., the measured eel velocity relative to fluid velocity. The slip ratio was, however, greater in the siphon than in the airlift (P < 0.01) within identical vertical upflow sections of the test equipment. Siphon slip ratios in the upflow vertical section were comparable to those established for the horizontal and downflow sections. Fish density did not affect attraction and passage through the airlift or siphon. No mortality or signs of injury were observed on any of the test eels through a 48 h post-test observation period. Both airlift and siphon downstream bypass systems show promise as effective technologies for protection of downstream migrating eels at a variety of water diversion or hydroelectric sites that pose threats of impingement, entrainment, and turbine mortality.
Citation
Baker, N., Haro, A., Watten, B., Noreika, J., & Bolland, J. D. (2019). Comparison of attraction, entrance and passage of downstream migrant American eels (Anguilla rostrata) through airlift and siphon deep entrance bypass systems. Ecological engineering, 126, 74-82. https://doi.org/10.1016/j.ecoleng.2018.10.011
Journal Article Type | Article |
---|---|
Acceptance Date | Oct 15, 2018 |
Online Publication Date | Nov 10, 2018 |
Publication Date | Jan 1, 2019 |
Deposit Date | Dec 20, 2018 |
Publicly Available Date | Nov 11, 2019 |
Journal | Ecological Engineering |
Print ISSN | 0925-8574 |
Electronic ISSN | 0925-8574 |
Publisher | Elsevier |
Peer Reviewed | Peer Reviewed |
Volume | 126 |
Pages | 74-82 |
DOI | https://doi.org/10.1016/j.ecoleng.2018.10.011 |
Keywords | Environmental Engineering; Management, Monitoring, Policy and Law; Nature and Landscape Conservation |
Public URL | https://hull-repository.worktribe.com/output/1195966 |
Publisher URL | https://www.sciencedirect.com/science/article/pii/S0925857418303872?via%3Dihub |
Additional Information | This article is maintained by: Elsevier; Article Title: Comparison of attraction, entrance and passage of downstream migrant American eels (Anguilla rostrata) through airlift and siphon deep entrance bypass systems; Journal Title: Ecological Engineering; CrossRef DOI link to publisher maintained version: https://doi.org/10.1016/j.ecoleng.2018.10.011; Content Type: article; Copyright: Published by Elsevier B.V. |
Contract Date | Dec 20, 2018 |
Files
Article
(1.3 Mb)
PDF
Publisher Licence URL
https://creativecommons.org/licenses/by-nc-nd/4.0/
Copyright Statement
© 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/
You might also like
Downloadable Citations
About Repository@Hull
Administrator e-mail: repository@hull.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search