University of Hull logo

Catching element formation in the act

Fryer, Chris L.; Timmes, Frank; Hungerford, Aimee L.; Couture, Aaron; Adams, Fred; Aoki, Wako; Arcones, Almudena; Arnett, David; Auchettl, Katie; Avila, Melina; Badenes, Carles; Baron, Eddie; Bauswein, Andreas; Beacom, John; Blackmon, Jeff; Blondin, Stephane; Bloser, Peter; Boggs, Steve; Boss, Alan; Brandt, Terri; Bravo, Eduardo; Brown, Ed; Brown, Peter; Steve Bruenn. Carl Budtz-Jorgensen; Burns, Eric; Calder, Alan; Caputo, Regina; Champagne, Art; Chevalier, Roger; Chieffi, Alessandro; Chipps, Kelly; Cinabro, David; Clarkson, Ondrea; Clayton, Don; Coc, Alain; Connolly, Devin; Conroy, Charlie; Cote, Benoit; Couch, Sean; Dauphas, Nicolas; James deBoer, Richard; Deibel, Catherine; Denisenkov, Pavel; Desch, Steve; Dessart, Luc; Diehl, Roland; Doherty, Carolyn; Dominguez, Inma; Dong, Subo; Dwarkadas, Vikram; Fan, Doreen; Fields, Brian; Fields, Carl; Filippenko, Alex; Fisher, Robert; Foucart, Francois; Fransson, Claes; Frohlich, Carla; Fuller, George; Gibson, Brad; Giryanskaya, Viktoriya; Gorres, Joachim; Goriely, Stephane; Grebenev, Sergei; Grefenstette, Brian; Grohs, Evan; Guillochon, James; Harpole, Alice; Harris, Chelsea; Austin Harris, J.; Harrison, Fiona; Hartmann, Dieter; Hashimoto, Masa-aki; Heger, Alexander; Hernanz, Margarita; Herwig, Falk; Hirschi, Raphael; William Hix, Raphael; Hoflich, Peter; Hoffman, Robert; Holcomb, Cole; Hsiao, Eric; Iliadis, Christian; Janiuk, Agnieszka; Janka, Thomas; Jerkstrand, Anders; Johns, Lucas; Jones, Samuel; Jose, Jordi; Kajino, Toshitaka; Karakas, Amanda; Karpov, Platon; Kasen, Dan; Kierans, Carolyn; Kippen, Marc; Korobkin, Oleg; Kobayashi, Chiaki; Kozma, Cecilia; Krot, Saha; Kumar, Pawan; Kuvvetli, Irfan; Pignatari, Marco

Authors

Chris L. Fryer

Melina Avila

Pawan Kumar

Irfan Kuvvetli

Carles Badenes

Eddie Baron

Andreas Bauswein

John Beacom

Jeff Blackmon

Stephane Blondin

Peter Bloser

Steve Boggs

Alan Boss

Frank Timmes

Terri Brandt

Eduardo Bravo

Ed Brown

Peter Brown

Steve Bruenn. Carl Budtz-Jorgensen

Eric Burns

Alan Calder

Regina Caputo

Art Champagne

Roger Chevalier

Aimee L. Hungerford

Alessandro Chieffi

Kelly Chipps

David Cinabro

Ondrea Clarkson

Don Clayton

Alain Coc

Devin Connolly

Charlie Conroy

Benoit Cote

Sean Couch

Aaron Couture

Nicolas Dauphas

Richard James deBoer

Catherine Deibel

Pavel Denisenkov

Steve Desch

Luc Dessart

Roland Diehl

Carolyn Doherty

Inma Dominguez

Subo Dong

Fred Adams

Vikram Dwarkadas

Doreen Fan

Brian Fields

Carl Fields

Alex Filippenko

Robert Fisher

Francois Foucart

Claes Fransson

Carla Frohlich

George Fuller

Wako Aoki

Viktoriya Giryanskaya

Joachim Gorres

Stephane Goriely

Sergei Grebenev

Brian Grefenstette

Evan Grohs

James Guillochon

Alice Harpole

Chelsea Harris

Almudena Arcones

J. Austin Harris

Fiona Harrison

Dieter Hartmann

Masa-aki Hashimoto

Alexander Heger

Margarita Hernanz

Falk Herwig

Raphael Hirschi

Raphael William Hix

Peter Hoflich

David Arnett

Robert Hoffman

Cole Holcomb

Eric Hsiao

Christian Iliadis

Agnieszka Janiuk

Thomas Janka

Anders Jerkstrand

Lucas Johns

Samuel Jones

Jordi Jose

Katie Auchettl

Toshitaka Kajino

Amanda Karakas

Platon Karpov

Dan Kasen

Carolyn Kierans

Marc Kippen

Oleg Korobkin

Chiaki Kobayashi

Cecilia Kozma

Saha Krot

Abstract

Gamma-ray astronomy explores the most energetic photons in nature to address some of the most pressing puzzles in contemporary astrophysics. It encompasses a wide range of objects and phenomena: stars, supernovae, novae, neutron stars, stellar-mass black holes, nucleosynthesis, the interstellar medium, cosmic rays and relativistic-particle acceleration, and the evolution of galaxies. MeV gamma-rays provide a unique probe of nuclear processes in astronomy, directly measuring radioactive decay, nuclear de-excitation, and positron annihilation. The substantial information carried by gamma-ray photons allows us to see deeper into these objects, the bulk of the power is often emitted at gamma-ray energies, and radioactivity provides a natural physical clock that adds unique information. New science will be driven by time-domain population studies at gamma-ray energies. This science is enabled by next-generation gamma-ray instruments with one to two orders of magnitude better sensitivity, larger sky coverage, and faster cadence than all previous gamma-ray instruments. This transformative capability permits: (a) the accurate identification of the gamma-ray emitting objects and correlations with observations taken at other wavelengths and with other messengers; (b) construction of new gamma-ray maps of the Milky Way and other nearby galaxies where extended regions are distinguished from point sources; and (c) considerable serendipitous science of scarce events -- nearby neutron star mergers, for example. Advances in technology push the performance of new gamma-ray instruments to address a wide set of astrophysical questions.

Other Type Other
Publication Date Feb 8, 2019
Related Public URLs https://arxiv.org/abs/1902.02915
Additional Information This is a white paper aiming to motivate the funding of a new gamma-ray telescope

Files




You might also like


Downloadable Citations