Feng Wang
A refining mechanism of primary Al3Ti intermetallic particles by ultrasonic treatment in the liquid state
Wang, Feng; Eskin, Dmitry; Mi, Jiawei; Connolley, Thomas; Lindsay, John; Mounib, Maher
Authors
Dmitry Eskin
Professor Jiawei Mi J.Mi@hull.ac.uk
Professor of Materials
Thomas Connolley
John Lindsay
Maher Mounib
Abstract
The mechanism underlying the considerable refinement of primary Al3Ti intermetallic particles induced by ultrasonic treatment (UST) in an Al-0.4 wt% Ti alloy in the fully liquid state was investigated. Scanning electron microscopy, energy dispersive X-ray spectroscopy, focused ion beam 3D tomography and transmission electron microscopy were used to clearly identify that α-Al2O3 particles were located at or near the centres of primary Al3Ti particles in the samples solidified with and without UST. Crystallographic evaluation using the edge-to-edge matching model and experimental determination of orientation relationships between the α-Al2O3 and primary Al3Ti particles using the convergent beam Kikuchi line diffraction patterns confirmed the high potency of α-Al2O3 particles as nucleation sites for the Al3Ti phase. Based on the experimental results, the refining mechanism is discussed in terms of proposed hypotheses in the literature. It is suggested that the significant refinement of primary Al3Ti particles upon UST is due to the cavitation-induced deagglomeration and distribution of the α-Al2O3 particles and the cavitation-enhanced wetting of the α-Al2O3 particles by liquid aluminium.
Citation
Wang, F., Eskin, D., Mi, J., Connolley, T., Lindsay, J., & Mounib, M. (2016). A refining mechanism of primary Al3Ti intermetallic particles by ultrasonic treatment in the liquid state. Acta Materialia, 116, 354-363. https://doi.org/10.1016/j.actamat.2016.06.056
Journal Article Type | Article |
---|---|
Acceptance Date | Jun 25, 2016 |
Online Publication Date | Jul 6, 2016 |
Publication Date | 2016-09 |
Deposit Date | May 7, 2019 |
Publicly Available Date | May 8, 2019 |
Journal | Acta Materialia |
Print ISSN | 1359-6454 |
Publisher | Elsevier |
Peer Reviewed | Peer Reviewed |
Volume | 116 |
Pages | 354-363 |
DOI | https://doi.org/10.1016/j.actamat.2016.06.056 |
Keywords | Aluminium alloys; Ultrasonic treatment; Primary intermetallic; Aluminium oxide; Heterogeneous nucleation |
Public URL | https://hull-repository.worktribe.com/output/1738729 |
Publisher URL | https://www.sciencedirect.com/science/article/pii/S1359645416304876?via%3Dihub |
Contract Date | May 7, 2019 |
Files
Article
(4.1 Mb)
PDF
Copyright Statement
This work is licensed under a Creative Commons Attribution 4.0 International License.
You might also like
Downloadable Citations
About Repository@Hull
Administrator e-mail: repository@hull.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search