U Battino
NuGrid stellar data set - III. Updated low-mass AGB models and s-process nucleosynthesis with metallicities Z = 0.01, Z = 0.02, and Z = 0.03
Battino, U; Tattersall, A; Lederer-Woods, C; Herwig, F; Denissenkov, P; Hirschi, R; Trappitsch, R; den Hartogh, J W; Pignatari, M
Authors
A Tattersall
C Lederer-Woods
F Herwig
P Denissenkov
R Hirschi
R Trappitsch
J W den Hartogh
M Pignatari
Abstract
© 2019 Oxford University Press. All rights reserved. The production of the neutron-capture isotopes beyond iron that we observe today in the Solar system is the result of the combined contribution of the r-process, the s-process, and possibly the i-process. Low-mass asymptotic giant branch (AGB) (1.5 < M/M☉ < 3) and massive (M > 10 M☉) stars have been identified as the main site of the s-process. In this work we consider the evolution and nucleosynthesis of low-mass AGB stars. We provide an update of the NuGrid Set models, adopting the same general physics assumptions but using an updated convective-boundary-mixing model accounting for the contribution from internal gravity waves. The combined data set includes the initial masses MZAMS/M☉ = 2, 3 for Z = 0.03, 0.02, 0.01. These new models are computed with the MESA stellar code and the evolution is followed up to the end of the AGB phase. The nucleosynthesis was calculated for all isotopes in post-processing with the NuGrid mppnp code. The convective-boundary-mixing model leads to the formation of a 13C-pocket three times wider compared to the one obtained in the previous set of models, bringing the simulation results now in closer agreement with observations. Using these new models, we discuss the potential impact of other processes inducing mixing, like rotation, adopting parametric models compatible with theory and observations. Complete yield data tables, derived data products, and online analytic data access are provided.
Citation
Battino, U., Tattersall, A., Lederer-Woods, C., Herwig, F., Denissenkov, P., Hirschi, R., Trappitsch, R., den Hartogh, J. W., & Pignatari, M. (2019). NuGrid stellar data set - III. Updated low-mass AGB models and s-process nucleosynthesis with metallicities Z = 0.01, Z = 0.02, and Z = 0.03. Monthly notices of the Royal Astronomical Society, 489(1), 1082-1098. https://doi.org/10.1093/mnras/stz2158
Journal Article Type | Article |
---|---|
Acceptance Date | Aug 5, 2019 |
Online Publication Date | Aug 20, 2019 |
Publication Date | 2019-10 |
Deposit Date | Aug 28, 2019 |
Publicly Available Date | Sep 10, 2019 |
Journal | Monthly Notices of the Royal Astronomical Society |
Print ISSN | 0035-8711 |
Electronic ISSN | 1365-2966 |
Publisher | Oxford University Press |
Peer Reviewed | Peer Reviewed |
Volume | 489 |
Issue | 1 |
Pages | 1082-1098 |
DOI | https://doi.org/10.1093/mnras/stz2158 |
Keywords | Space and Planetary Science; Astronomy and Astrophysics;Stars: abundances, evolution, interiors |
Public URL | https://hull-repository.worktribe.com/output/2529767 |
Publisher URL | https://academic.oup.com/mnras/article/489/1/1082/5552141 |
Contract Date | Aug 28, 2019 |
Files
Article
(3.6 Mb)
PDF
Copyright Statement
© The Author(s) 2019. Published by Oxford University Press on behalf of The Royal Astronomical Society.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
You might also like
Type Ia Supernova Nucleosynthesis: Metallicity-dependent Yields
(2023)
Journal Article
The chemical evolution of the solar neighbourhood for planet-hosting stars
(2023)
Journal Article
Progress on nuclear reaction rates affecting the stellar production of <sup>26</sup>Al
(2023)
Journal Article
Chemical evolution of fluorine in the Milky Way
(2022)
Journal Article
Downloadable Citations
About Repository@Hull
Administrator e-mail: repository@hull.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search