Julie A. Hope
Effect of Nutrient Enrichment and Turbidity on Interactions Between Microphytobenthos and a Key Bivalve: Implications for Higher Trophic Levels
Hope, Julie A.; Hewitt, Judi; Pilditch, Conrad A.; Savage, Candida; Thrush, Simon F.
Authors
Judi Hewitt
Conrad A. Pilditch
Candida Savage
Simon F. Thrush
Abstract
© Copyright © 2020 Hope, Hewitt, Pilditch, Savage and Thrush. Benthic diatoms are a high-quality food resource providing essential fatty acids to benthic grazers. Different stressors may alter the proportion of diatoms and other microalgae and thus can affect the quality as well as quantity of food available to benthic consumers. Microphytobenthos (MPB) lipid biomarkers were assessed in a field experiment to elucidate changes to the biosynthesis of fatty acids (FA) under nitrogen (N) enrichment (three levels) at eight intertidal sites that spanned a turbidity gradient. Influences on the flow of carbon and energy were determined using FA biomarkers of a functionally important deposit-feeding tellinid bivalve (Macomona liliana). Site-specific effects of N enrichment were detected in MPB quantity and quality measurements. Enrichment generally increased MPB biomass (chl a) across all sites, while the proportion of diatom associated fatty acid biomarkers was more variable at some sites. Analysis of sediment FA biomarkers and environmental variables suggested that changes to the microbial community composition and quality were related to water clarity and mud content of the bed. The ability of the MPB to utilize the increased nitrogen, as indicated by the resource use efficiency index, was also important. Despite the increase in MPB biomass, lipid reserves in the tissue of M. liliana, a primary consumer of MPB, were reduced (by up to 6 orders of magnitude) in medium and high N addition plots compared to control plots. Further, the nutritional quality of the bivalves to higher trophic levels [indicated by a lower ratio of essential FAs (ω3:ω6)] was reduced in high treatment plots compared to control plots suggesting the bivalves were adversely affected by nutrient enrichment but not due to a reduction in food availability. This study suggests anthropogenic nutrient enrichment and turbidity may indirectly alter the structure and function of the benthic food web, in terms of carbon flow and ecosystem productivity. This may indirectly change the interactions between MPB and key bivalves as suspended sediment concentrations and nutrient enrichment continue to increase globally. This has implications for various ecosystem functions that are mediated by these interactions, such as nutrient cycling as well as primary and secondary production.
Citation
Hope, J. A., Hewitt, J., Pilditch, C. A., Savage, C., & Thrush, S. F. (in press). Effect of Nutrient Enrichment and Turbidity on Interactions Between Microphytobenthos and a Key Bivalve: Implications for Higher Trophic Levels. Frontiers in Marine Science, 7, Article 695. https://doi.org/10.3389/fmars.2020.00695
Journal Article Type | Article |
---|---|
Acceptance Date | Jul 20, 2020 |
Online Publication Date | Aug 20, 2020 |
Deposit Date | Sep 28, 2020 |
Publicly Available Date | Sep 30, 2020 |
Journal | Frontiers in Marine Science |
Electronic ISSN | 2296-7745 |
Publisher | Frontiers Media |
Peer Reviewed | Peer Reviewed |
Volume | 7 |
Article Number | 695 |
DOI | https://doi.org/10.3389/fmars.2020.00695 |
Keywords | Fatty acid biomarkers; Benthic microalgae; MPB; Nutrient enrichment; Turbidity; Soft sediment ecology; Food quality; Trophic interactions |
Public URL | https://hull-repository.worktribe.com/output/3603779 |
Publisher URL | https://www.frontiersin.org/articles/10.3389/fmars.2020.00695/full |
Files
Published article
(5.9 Mb)
PDF
Copyright Statement
Copyright © 2020 Hope, Hewitt, Pilditch, Savage and Thrush. This is an open-accessarticle distributed under the terms of the Creative Commons Attribution License(CC BY). The use, distribution or reproduction in other forums is permitted, providedthe original author(s) and the copyright owner(s) are credited and that the originalpublication in this journal is cited, in accordance with accepted academic practice. Nouse, distribution or reproduction is permitted which does not comply with these terms.Frontiers in Marine Science | www.frontiersin.org17August 2020 | Volume 7 | Article 695
You might also like
The pervasive role of biological cohesion in bedform development
(2015)
Journal Article
Integrating field and laboratory approaches for ripple development in mixed sand–clay–EPS
(2019)
Journal Article
Downloadable Citations
About Repository@Hull
Administrator e-mail: repository@hull.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search