Chris B. Brook
Explaining the chemical trajectories of accreted and in-situ halo stars of the Milky Way
Brook, Chris B.; Kawata, Daisuke; Gibson, Brad K.; Gallart, Carme; Vicente, Andrés
Authors
Daisuke Kawata
Brad K. Gibson
Carme Gallart
Andrés Vicente
Abstract
© 2020 The Author(s) Published by Oxford University Press on behalf of the Royal Astronomical Society. The Milky Way underwent its last significant merger ten billion years ago, when the Gaia-Enceladus-Sausage (GES) was accreted. Accreted GES stars and progenitor stars born prior to the merger make up the bulk of the inner halo. Even though these two main populations of halo stars have similar durations of star formation prior to their merger, they differ in [α/Fe]-[Fe/H] space, with the GES population bending to lower [α/Fe] at a relatively low value of [Fe/H]. We use cosmological simulations of a 'Milky Way' to argue that the different tracks of the halo stars through the [α/Fe]-[Fe/H] plane are due to a difference in their star formation history and efficiency, with the lower mass GES having its low and constant star formation regulated by feedback whilst the higher mass main progenitor has a higher star formation rate prior to the merger. The lower star formation efficiency of GES leads to lower gas pollution levels, pushing [α/Fe]-[Fe/H] tracks to the left. In addition, the increasing star formation rate maintains a higher relative contribution of Type II SNe to Type Ia SNe for the main progenitor population that formed during the same time period, thus maintaining a relatively high [α/Fe]. Thus the different positions of the downturns in the [α/Fe]-[Fe/H] plane for the GES stars are not reflective of different star formation durations, but instead reflect different star formation efficiencies.
Citation
Brook, C. B., Kawata, D., Gibson, B. K., Gallart, C., & Vicente, A. (2020). Explaining the chemical trajectories of accreted and in-situ halo stars of the Milky Way. Monthly notices of the Royal Astronomical Society, 495(3), 2645-2651. https://doi.org/10.1093/mnras/staa992
Journal Article Type | Article |
---|---|
Acceptance Date | Apr 7, 2020 |
Online Publication Date | Apr 15, 2020 |
Publication Date | 2020-07 |
Deposit Date | Feb 1, 2021 |
Publicly Available Date | Feb 2, 2021 |
Journal | Monthly Notices of the Royal Astronomical Society |
Print ISSN | 0035-8711 |
Electronic ISSN | 1365-2966 |
Publisher | Oxford University Press |
Peer Reviewed | Peer Reviewed |
Volume | 495 |
Issue | 3 |
Pages | 2645-2651 |
DOI | https://doi.org/10.1093/mnras/staa992 |
Keywords | Galaxies: dwarf; Galaxies: evolution Galaxies: formation; Galaxies: haloes |
Public URL | https://hull-repository.worktribe.com/output/3681964 |
Publisher URL | https://academic.oup.com/mnras/article-abstract/495/3/2645/5820236?redirectedFrom=fulltext |
Files
Published article
(2.2 Mb)
PDF
Copyright Statement
This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society ©: 2020 The Author(s). Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.
You might also like
A Large-scale Approach to Modeling Molecular Biosignatures: The Diatomics
(2022)
Journal Article
Formation and Morphology of the First Galaxies in the Cosmic Morning
(2022)
Journal Article
Chemical evolution of fluorine in the Milky Way
(2022)
Journal Article
Horizons: nuclear astrophysics in the 2020s and beyond
(2022)
Journal Article
Downloadable Citations
About Repository@Hull
Administrator e-mail: repository@hull.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search