Mohammad Alshraideh
Using program data-state scarcity to guide automatic test data generation
Alshraideh, Mohammad; Bottaci, Leonardo; Mahafzah, Basel A.
Authors
Leonardo Bottaci
Basel A. Mahafzah
Abstract
Finding test data to cover structural test coverage criteria such as branch coverage is largely a manual and hence expensive activity. A potential low cost alternative is to generate the required test data automatically. Search-based test data generation is one approach that has attracted recent interest. This approach is based on the definition of an evaluation or cost function that is able to discriminate between candidate test cases with respect to achieving a given test goal. The cost function is implemented by appropriate instrumentation of the program under test. The candidate test is then executed on the instrumented program. This provides an evaluation of the candidate test in terms of the "distance'' between the computation achieved by the candidate test and the computation required to achieve the test goal. Providing the cost function is able to discriminate reliably between candidate tests that are close or far from covering the test goal and the goal is feasible, a search process is able to converge to a solution, i.e., a test case that satisfies the coverage goal. For some programs, however, an informative cost function is difficult to define. The operations performed by these programs are such that the cost function returns a constant value for a very wide range of inputs. A typical example of this problem arises in the instrumentation of branch predicates that depend on the value of a Boolean-valued (flag) variable although the problem is not limited to programs that contain flag variables. Although methods are known for overcoming the problems of flag variables in particular cases, the more general problem of a near constant cost function has not been tackled. This paper presents a new heuristic for directing the search when the cost function at a test goal is not able to differentiate between candidate test inputs. The heuristic directs the search toward test cases that produce rare or scarce data states. Scarce inputs for the cost function are more likely to produce new cost values. The proposed method is evaluated empirically for a number of example programs for which existing methods are inadequate.
Citation
Alshraideh, M., Bottaci, L., & Mahafzah, B. A. (2010). Using program data-state scarcity to guide automatic test data generation. Software quality journal, 18(1), 109-144. https://doi.org/10.1007/s11219-009-9083-x
Journal Article Type | Article |
---|---|
Acceptance Date | Mar 31, 2010 |
Online Publication Date | Sep 16, 2009 |
Publication Date | 2010-02 |
Journal | SOFTWARE QUALITY JOURNAL |
Print ISSN | 0963-9314 |
Publisher | Springer Verlag |
Peer Reviewed | Peer Reviewed |
Volume | 18 |
Issue | 1 |
Pages | 109-144 |
DOI | https://doi.org/10.1007/s11219-009-9083-x |
Keywords | Software; Safety, Risk, Reliability and Quality |
Public URL | https://hull-repository.worktribe.com/output/391342 |
You might also like
Model transformation for analyzing dependability of AADL model by using HiP-HOPS
(2019)
Journal Article
Mutation analysis of dynamically typed programs
(2013)
Thesis
Downloadable Citations
About Repository@Hull
Administrator e-mail: repository@hull.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search