Fiorenzo Vincenzo
Evolution of N/O ratios in galaxies from cosmological hydrodynamical simulations
Vincenzo, Fiorenzo; Kobayashi, Chiaki
Authors
Chiaki Kobayashi
Abstract
We study the redshift evolution of the gas-phase O/H and N/O abundances, both (i) for individual ISM regions within single spatially-resolved galaxies and (ii) when dealing with average abundances in the whole ISM of many unresolved galaxies. We make use of a cosmological hydrodynamical simulation including detailed chemical enrichment, which properly takes into account the variety of different stellar nucleosynthetic sources of O and N in galaxies. We identify $33$ galaxies in the simulation, lying within dark matter halos with virial mass in the range $10^{11}\le M_{\text{DM}} \le 10^{13}\,\text{M}_{\odot}$ and reconstruct how they evolved with redshift. For the local and global measurements, the observed increasing trend of N/O at high O/H can be explained, respectively, (i) as the consequence of metallicity gradients which have settled in the galaxy interstellar medium, where the innermost galactic regions have the highest O/H abundances and the highest N/O ratios, and (ii) as the consequence of an underlying average mass-metallicity relation that galaxies obey as they evolve across cosmic epochs, where -- at any redshift -- less massive galaxies have lower average O/H and N/O ratios than the more massive ones. We do not find a strong dependence on the environment. For both local and global relations, the predicted N/O--O/H relation is due to the mostly secondary origin of N in stars. We also predict that the O/H and N/O gradients in the galaxy interstellar medium gradually flatten as functions of redshift, with the average N/O ratios being strictly coupled with the galaxy star formation history. Because N production strongly depends on O abundances, we obtain a universal relation for the N/O--O/H abundance diagram whether we consider average abundances of many unresolved galaxies put together or many abundance measurements within a single spatially-resolved galaxy.
Citation
Vincenzo, F., & Kobayashi, C. (2018). Evolution of N/O ratios in galaxies from cosmological hydrodynamical simulations. Monthly notices of the Royal Astronomical Society, 478(1), 155–166. https://doi.org/10.1093/mnras/sty1047
Journal Article Type | Article |
---|---|
Acceptance Date | Apr 20, 2018 |
Online Publication Date | Apr 26, 2018 |
Publication Date | 2018-07 |
Deposit Date | Mar 12, 2022 |
Publicly Available Date | Mar 28, 2022 |
Journal | Monthly notices of the Royal Astronomical Society |
Print ISSN | 0035-8711 |
Publisher | Oxford University Press |
Peer Reviewed | Peer Reviewed |
Volume | 478 |
Issue | 1 |
Pages | 155–166 |
DOI | https://doi.org/10.1093/mnras/sty1047 |
Keywords | Astrophysics of Galaxies |
Public URL | https://hull-repository.worktribe.com/output/3946273 |
Files
Published article
(7.4 Mb)
PDF
Copyright Statement
This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society ©: 2018 The Author(s) Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.
You might also like
Constraining SN Ia Progenitors from the Observed Fe-peak Elemental Abundances in the Milky Way Dwarf Galaxy Satellites
(2024)
Preprint / Working Paper
CLASSY IX: The Chemical Evolution of the Ne, S, Cl, and Ar Elements
(2024)
Journal Article
The environmental dependence of the stellar mass-gas metallicity relation in Horizon Run 5
(2024)
Journal Article
GTC Follow-up Observations of Very Metal-poor Star Candidates from DESI
(2023)
Journal Article
Downloadable Citations
About Repository@Hull
Administrator e-mail: repository@hull.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search