Skip to main content

Research Repository

Advanced Search

The application of muscle wrapping to voxel-based finite element models of skeletal structures

O�Higgins, Paul; Liu, Jia; Shi, Junfen; Fitton, Laura C.; Phillips, Roger; O'Higgins, Paul; Fagan, Michael J.


Paul O�Higgins

Jia Liu

Junfen Shi

Laura C. Fitton

Roger Phillips

Paul O'Higgins

Michael J. Fagan


Finite elements analysis (FEA) is now used routinely to interpret skeletal form in terms of function in both medical and biological applications. To produce accurate predictions from FEA models, it is essential that the loading due to muscle action is applied in a physiologically reasonable manner. However, it is common for muscle forces to be represented as simple force vectors applied at a few nodes on the model's surface. It is certainly rare for any wrapping of the muscles to be considered, and yet wrapping not only alters the directions of muscle forces but also applies an additional compressive load from the muscle belly directly to the underlying bone surface. This paper presents a method of applying muscle wrapping to high-resolution voxel-based finite element (FE) models. Such voxel-based models have a number of advantages over standard (geometry-based) FE models, but the increased resolution with which the load can be distributed over a model's surface is particularly advantageous, reflecting more closely how muscle fibre attachments are distributed. In this paper, the development, application and validation of a muscle wrapping method is illustrated using a simple cylinder. The algorithm: (1) calculates the shortest path over the surface of a bone given the points of origin and ultimate attachment of the muscle fibres; (2) fits a Non-Uniform Rational B-Spline (NURBS) curve from the shortest path and calculates its tangent, normal vectors and curvatures so that normal and tangential components of the muscle force can be calculated and applied along the fibre; and (3) automatically distributes the loads between adjacent fibres to cover the bone surface with a fully distributed muscle force, as is observed in vivo. Finally, we present a practical application of this approach to the wrapping of the temporalis muscle around the cranium of a macaque skull.


Liu, J., Shi, J., Fitton, L. C., Phillips, R., O'Higgins, P., & Fagan, M. J. (2012). The application of muscle wrapping to voxel-based finite element models of skeletal structures. Biomechanics and Modeling in Mechanobiology, 11(1-2), 35-47.

Journal Article Type Article
Acceptance Date Feb 10, 2011
Online Publication Date Feb 10, 2011
Publication Date 2012-01
Journal Biomechanics and modeling in mechanobiology
Print ISSN 1617-7940
Electronic ISSN 1617-7940
Publisher Springer Verlag
Peer Reviewed Peer Reviewed
Volume 11
Issue 1-2
Pages 35-47
Keywords Biotechnology; Mechanical Engineering; Modelling and Simulation
Public URL
PMID 21308392