U. Atxitia
Ultrafast double magnetization switching in GdFeCo with two picosecond-delayed femtosecond pump pulses
Atxitia, U.; Ostler, T. A.
Authors
T. A. Ostler
Abstract
The recently discovered thermally induced magnetization switching (TIMS) induced by single femtosecond laser pulses in ferrimagnetic GdFeCo alloys proceeds on the picosecond time-scale. The rate at which data can be changed for use of TIMS in technological devices is limited by the processes leading to thermal equilibrium. In the present work, we address the question of whether it is possible to further excite switching via TIMS well before thermal equilibrium between subsystems is reached. In particular, we investigate the conditions for double thermally induced magnetic switching by the application of two shortly delayed laser pulses. These conditions become relevant for potential applications as it sets both a limit to rewrite data and demonstrates the importance of spatial confinement of a heat pulse to bit size, as neighboring bits may be accidentally re-switched for spatially extended pulse spots. To demonstrate this effect, we theoretically study the switching behavior in a prototypical ferrimagnetic GdFeCo alloy as a function of composition. We use computer simulations based on thermal atomistic spin dynamics and demonstrate the possibility of inducing a second switching event well before thermal equilibrium is reached and define the conditions under which it can occur. Our theoretical findings could serve as a guidance for further understanding of TIMS as well as to act as a guide for future applications.
Citation
Atxitia, U., & Ostler, T. A. (2018). Ultrafast double magnetization switching in GdFeCo with two picosecond-delayed femtosecond pump pulses. Applied physics letters, 113(6), Article 062402. https://doi.org/10.1063/1.5044272
Journal Article Type | Article |
---|---|
Acceptance Date | Jul 20, 2018 |
Online Publication Date | Aug 8, 2018 |
Publication Date | Aug 6, 2018 |
Deposit Date | Jun 16, 2022 |
Journal | Applied Physics Letters |
Print ISSN | 0003-6951 |
Publisher | American Institute of Physics |
Peer Reviewed | Peer Reviewed |
Volume | 113 |
Issue | 6 |
Article Number | 062402 |
DOI | https://doi.org/10.1063/1.5044272 |
Public URL | https://hull-repository.worktribe.com/output/4015054 |
You might also like
Ultrafast heating as a sufficient stimulus for magnetization reversal in a ferrimagnet
(2012)
Journal Article
Classical spin model of the relaxation dynamics of rare-earth doped permalloy
(2012)
Journal Article
Ultrafast dynamical path for the switching of a ferrimagnet after femtosecond heating
(2013)
Journal Article
Downloadable Citations
About Repository@Hull
Administrator e-mail: repository@hull.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search