Skip to main content

Research Repository

Advanced Search

The lines of PG(4, 2) are the points on a quintic in PG(9,2)

Shaw, Ron; Gordon, Neil A

Authors

Ron Shaw



Abstract

Let V denote a 5-dimensional vector space over a field, and let (bij) denote the 10 independent components of a bivectorb?Λ2Vrelative to a choice of product basis {eiΛej: 1 ≤i

Citation

Shaw, R., & Gordon, N. A. (1994). The lines of PG(4, 2) are the points on a quintic in PG(9,2). Journal of Combinatorial Theory, Series A, 68(1), 226-231. https://doi.org/10.1016/0097-3165%2894%2990102-3

Journal Article Type Article
Online Publication Date Jul 14, 2004
Publication Date 1994-10
Journal Journal of Combinatorial Theory, Series A
Print ISSN 0097-3165
Publisher Elsevier
Peer Reviewed Peer Reviewed
Volume 68
Issue 1
Pages 226-231
DOI https://doi.org/10.1016/0097-3165%2894%2990102-3
Keywords Theoretical Computer Science; Computational Theory and Mathematics; Discrete Mathematics and Combinatorics
Public URL https://hull-repository.worktribe.com/output/405480
Publisher URL https://www.sciencedirect.com/science/article/pii/0097316594901023?via%3Dihub#!