Scott Baldridge
On ribbon graphs and virtual links
Baldridge, Scott; H. Kauffman, Louis; Rushworth, William
Authors
Louis H. Kauffman
William Rushworth
Abstract
We introduce a new equivalence relation on decorated ribbon graphs, and show that its equivalence classes directly correspond to virtual links. We demonstrate how this correspondence can be used to convert any invariant of virtual links into an invariant of ribbon graphs, and vice versa.
Citation
Baldridge, S., H. Kauffman, L., & Rushworth, W. (2022). On ribbon graphs and virtual links. European Journal of Combinatorics, 103, Article 103520. https://doi.org/10.1016/j.ejc.2022.103520
Journal Article Type | Article |
---|---|
Acceptance Date | Jan 30, 2022 |
Online Publication Date | Feb 22, 2022 |
Publication Date | 2022-06 |
Deposit Date | Nov 19, 2022 |
Journal | European Journal of Combinatorics |
Print ISSN | 0195-6698 |
Electronic ISSN | 1095-9971 |
Publisher | Elsevier |
Peer Reviewed | Peer Reviewed |
Volume | 103 |
Article Number | 103520 |
DOI | https://doi.org/10.1016/j.ejc.2022.103520 |
Keywords | Geometric Topology; Combinatorics; |
Public URL | https://hull-repository.worktribe.com/output/4127503 |
You might also like
A parity for 2-colourable links
(2021)
Journal Article
Computations of the slice genus of virtual knots
(2018)
Journal Article
Minimal crossing number implies minimal supporting genus
(2021)
Journal Article
Doubled Khovanov Homology
(2018)
Journal Article
Downloadable Citations
About Repository@Hull
Administrator e-mail: repository@hull.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search