Skip to main content

Research Repository

Advanced Search

Validating a voxel-based finite element model of a human mandible using digital speckle pattern interferometry

Liu, J.; Fagan, M.J.; O�Higgins, P.; Gröning, F.; Liu, Jing-Sheng; Fagan, M. J.; O'Higgins, P.


J. Liu

M.J. Fagan

P. O�Higgins

F. Gröning

Jing-Sheng Liu

M. J. Fagan

P. O'Higgins


Finite element analysis is a powerful tool for predicting the mechanical behaviour of complex biological structures like bones, but to be confident in the results of an analysis, the model should be validated against experimental data. In such validation experiments, the strains in the loaded bones are usually measured with strain gauges glued to the bone surface, but the use of strain gauges on bone can be difficult and provides only very limited data regarding surface strain distributions. This study applies the full-field strain measurement technique of digital speckle pattern interferometry to measure strains in a loaded human mandible and compares the results with the predictions of voxel-based finite element models of the same specimen. It is found that this novel strain measurement technique yields consistent, reliable measurements. Further, strains predicted by the finite element analysis correspond well with the experimental data. These results not only confirm the usefulness of this technique for future validation studies in the field of bone mechanics, but also show that the modelling approach used in this study is able to predict the experimental results very accurately. © 2009 Elsevier Ltd. All rights reserved.


Gröning, F., Liu, J., Fagan, M. J., & O'Higgins, P. (2009). Validating a voxel-based finite element model of a human mandible using digital speckle pattern interferometry. Journal of biomechanics, 42(9), 1224-1229.

Journal Article Type Article
Acceptance Date Mar 11, 2009
Online Publication Date Apr 25, 2009
Publication Date Jun 19, 2009
Journal Journal of biomechanics
Print ISSN 0021-9290
Publisher Elsevier
Peer Reviewed Peer Reviewed
Volume 42
Issue 9
Pages 1224-1229
Keywords Biophysics; Rehabilitation; Orthopedics and Sports Medicine; Biomedical Engineering
Public URL
Publisher URL
PMID 19394021