Qais Mahmoud Hassan
A multilayered agent society for flexible image processing
Hassan, Qais Mahmoud
Authors
Contributors
Roger, computer scientist Phillips
Supervisor
Abstract
Medical imaging is revolutionising the practise of medicine, and it is becoming an indispensable tool for several important tasks, such as, the inspection of internal structures, radiotherapy planning and surgical simulation. However, accurate and efficient segmentation and labelling of anatomical structures is still a major obstacle to computerised medical image analysis. Hundreds of image segmentation algorithms have been proposed in the literature, yet most of these algorithms are either derivatives of low-level algorithms or created in an ad-hoc manner in order to solve a particular segmentation problem.
This research proposes the Agent Society for Image Processing (ASIP), which is an intelligent customisable framework for image segmentation motivated by active contours and MultiAgent systems. ASIP is presented in a hierarchical manner as a multilayer system consisting of several high-level agents (layers). The bottom layers contain a society of rational reactive MicroAgents that adapt their behaviour according to changes in the world combined with their knowledge about the environment. On top of these layers are the knowledge and shape agents responsible for creating the artificial environment and setting up the logical rules and restrictions for the MicroAgents. At the top layer is the cognitive agent, in charge of plan handling and user interaction. The framework as a whole is comparable to an enhanced active contour model (body) with a higher intelligent force (mind) initialising and controlling the active contour.
The ASIP framework was customised for the automatic segmentation of the Left Ventricle (LV) from a 4D MRI dataset. Although no pre-computed knowledge were utilised in the LV segmentation, good results were obtained from segmenting several patients' datasets. The output of the segmentation were compared with several snake based algorithms and evaluated against manually segmented "reference images" using various empirical discrepancy measurements.
Citation
Hassan, Q. M. A multilayered agent society for flexible image processing. (Thesis). University of Hull. https://hull-repository.worktribe.com/output/4208882
Thesis Type | Thesis |
---|---|
Deposit Date | Aug 15, 2011 |
Publicly Available Date | Feb 22, 2023 |
Keywords | Computer science |
Public URL | https://hull-repository.worktribe.com/output/4208882 |
Additional Information | Department of Computer Science, The University of Hull |
Award Date | Sep 1, 2008 |
Files
Thesis
(9 Mb)
PDF
Copyright Statement
© 2008 Hassan, Qais Mahmoud. All rights reserved. No part of this publication may be reproduced without the written permission of the copyright holder.
Downloadable Citations
About Repository@Hull
Administrator e-mail: repository@hull.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search