Skip to main content

Research Repository

Advanced Search

Multi-objective optimisation of safety-critical hierarchical systems

Parker, David (David James)

Authors

David (David James) Parker



Contributors

Abstract

Achieving high reliability, particularly in safety critical systems, is an important and often mandatory requirement. At the same time costs should be kept as low as possible. Finding an optimum balance between maximising a system's reliability and minimising its cost is a hard combinatorial problem. As the size and complexity of a system increases, so does the scale of the problem faced by the designers. To address these difficulties, meta-heuristics such as Genetic Algorithms and Tabu Search algorithms have been applied in the past for automatically determining the optimal allocation of redundancies in a system as a mechanism for optimising the reliability and cost characteristics of that system. In all cases, simple reliability block diagrams with restrictive assumptions, such as failure independence and limited 2-state failure modes, were used for evaluating the reliability of the candidate designs produced by the various algorithms.

This thesis argues that a departure from this restrictive evaluation model is possible by using a new model-based reliability evaluation technique called Hierachically Performed Hazard Origin and Propagation Studies (HiP-HOPS). HiP-HOPS can overcome the limitations imposed by reliability block diagrams by providing automatic analysis of complex engineering models with multiple failure modes. The thesis demonstrates that, used as the fitness evaluating component of a multi-objective Genetic Algorithm, HiP-HOPS can be used to solve the problem of redundancy allocation effectively and with relative efficiency. Furthermore, the ability of HiP-HOPS to model and automatically analyse complex engineering models, with multiple failure modes, allows the Genetic Algorithm to potentially optimise systems using more flexible strategies, not just series-parallel. The results of this thesis show the feasibility of the approach and point to a number of directions for future work to consider.

Citation

Parker, D. (. J. (2010). Multi-objective optimisation of safety-critical hierarchical systems. (Thesis). University of Hull. Retrieved from https://hull-repository.worktribe.com/output/4209821

Thesis Type Thesis
Deposit Date Aug 15, 2011
Publicly Available Date Feb 22, 2023
Keywords Computer science
Public URL https://hull-repository.worktribe.com/output/4209821
Additional Information Department of Computer Science, The University of Hull
Award Date Feb 1, 2010

Files

Thesis (2 Mb)
PDF

Copyright Statement
© 2010 Parker, David (David James). All rights reserved. No part of this publication may be reproduced without the written permission of the copyright holder.




You might also like



Downloadable Citations