Skip to main content

Research Repository

Advanced Search

Regulation of blood platelet function by nitric oxide

Wake, Jonathan D.


Jonathan D. Wake


Khalid Naseem

Stephen L. Atkin


Upon vascular injury, platelets instantly adhere to the exposed extracellular matrix resulting in platelet activation and aggregation to form a haemostatic plug. This self-amplifying mechanism requires a tight control to prevent uncontrolled platelet aggregate formation that could occlude the vessel. Endothelial-derived nitric oxide (NO) and prostacyclin (PGI₂) are strong negative regulators that modulate platelet adhesion, activation, aggregation, secretion and shape change. In this study the effects of NO on Ca²+ dependent and independent pathways of activation were investigated. The data produced during the course of this study reveals new insights into the mechanisms by which NO regulates platelet responses via the activation of the AGC family of Ser/Thr protein kinases. NO inhibited platelet shape change in a concentration dependent manner. Platelet shape change is driven by phosphorylation of myosin light chain (MLC) and the experimental data shows that NO blocked this critical phosphorylation event. Phospho-MLC generated in response to platelet agonists occurs through a Ca²+ dependent and RhoA kinase (ROCK)-dependent mechanisms and NO differentially inhibits both pathways. Activation of the ROCK pathway via RhoA leads to the phosphorylation MLC phosphatase Threonine⁶⁹⁶⁄⁸⁵³, which inhibits enzyme activity. Experimental evidence in this thesis indicates that NO, acting through cGMP and protein kinase G, prevents this inhibitory phosphorylation of MLCP by at least two mechanisms, (i) inhibiting the ROCK pathway that phosphorylates MLCP, and (ii) directly phosphorylating MLCP at an independent site, Serine⁶⁹⁵. These original observations hint at a novel mechanism for platelet regulation by the NO-cGMP-signalling pathway.


Wake, J. D. (2013). Regulation of blood platelet function by nitric oxide. (Thesis). University of Hull. Retrieved from

Thesis Type Thesis
Deposit Date Sep 10, 2013
Publicly Available Date Feb 23, 2023
Keywords Medicine
Public URL
Additional Information Postgraduate Medical Institute, The University of Hull
Award Date Jan 1, 2013


Thesis (3.5 Mb)

Copyright Statement
© 2013 Wake, Jonathan D. All rights reserved. No part of this publication may be reproduced without the written permission of the copyright holder.

You might also like

Downloadable Citations