Jonathan Michael Rigelsford
Design and analysis of an acoustic random spherical volumetric array
Rigelsford, Jonathan Michael
Authors
Contributors
Alan Tennant
Supervisor
Abstract
Acoustic arrays have been widely studied and can be used for a variety of applications. Existing acoustic array systems have mainly utilised linear and planar geometries. Such geometries have limited scan angles and can suffer from beam broadening and large grating lobes.
This thesis presents a new acoustic array topology, the random spherical volumetric array. The system developed consists of 64 omni-directional microphones arranged at pseudo random locations within a spherical volume. The spherical array geometry provides the potential for full elevation and azimuth scan coverage. The projected aperture of a spherical array is direction independent, with the beamwidth and gain of the direction response being constant for all scan angles. The non-periodic element arrangement eliminates the possibility of large grating lobes and results in an array pattern with an average sidelobe level that is inversely proportional to the number of array elements. These properties enable wide-angle beam steering over a very large frequency bandwidth.
The potential of acoustic volumetric arrays is examined and the results of theoretical and experimental investigations are presented. Holographic techniques have been implemented on the experimental system to produce images of sound sources and of reflections in the test environment. The concept of a synthetic volumetric array is introduced in which original synthetic aperture and multiple frequency techniques can be successfully used to reduce the average sidelobe level of the random spherical volumetric array.
Initially, the acoustic random spherical volumetric array was envisaged as an inexpensive test-bed for microwave and radar system algorithm development. Since that time it has been found that application areas for the random spherical volumetric array also include covert surveillance operations, acoustic imaging and auditorium characterisation. Development of the system could allow security forces to monitor large crowds and riot situations; help in the detection of sniper location; and assist designers to build better auditoriums by highlighting areas of high reflection and reverberation.
Citation
Rigelsford, J. M. Design and analysis of an acoustic random spherical volumetric array. (Thesis). University of Hull. https://hull-repository.worktribe.com/output/4219778
Thesis Type | Thesis |
---|---|
Deposit Date | Jan 25, 2018 |
Publicly Available Date | Feb 23, 2023 |
Keywords | Engineering design and manufacture |
Public URL | https://hull-repository.worktribe.com/output/4219778 |
Additional Information | Department of Engineering, Design and Manufacture, The University of Hull |
Award Date | Sep 1, 2001 |
Files
Thesis
(49.6 Mb)
PDF
Copyright Statement
© 2001 Rigelsford, Jonathan Michael. All rights reserved. No part of this publication may be reproduced without the written permission of the copyright holder.
Downloadable Citations
About Repository@Hull
Administrator e-mail: repository@hull.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search