Kate Alice Womack
Signatures of i-process nucleosynthesis
Womack, Kate Alice
Authors
Contributors
Richard Stancliffe
Supervisor
Marco Pignatari
Supervisor
Abstract
Neutron capture nucleosynthesis is responsible for the production of heavy elements. Three neutron capture processes are currently known, each occurring at their own characteristic neutron density and operating in different ways. The slow neutron capture process operates at neutron densities of n ≈ 10⁷ 10¹⁰ cm⁻³, the rapid at neutron densities of = & 10²⁰ cm⁻³ and the intermediate at neutron densities of n ≥ 10¹² - 10¹⁵ cm⁻³. The intermediate neutron capture process (i process) is the focus of this work.
The i process is now widely accepted to be the process that produces the unusual abundances of carbon-enhanced metal-poor (CEMP) -r/s stars. A challenge in recent years has been constraining a site for the i process. Given the large range in potential neutron densities, many astrophysical sites have the potential to host i-process conditions. Two of the most promising sites for the i process are: the intershell regions of low-mass, low-metallicity asymptotic giant branch stars and on rapidly accreting white dwarfs. This work provides abundance analyses of models of the two different scenarios.
I first look at comparing both models to a sample of CEMP-r/s stars using j2 fitting. From this I was able to determine the abundance signatures that can make one model fit an i-process pattern more closely than another. I used this fitting technique to fit i-process models to other objects in the literature, including to phosphorus-rich stars. j2 fitting is also used to show that stellar models can be used to make predictions of the Th and U we would expect to see from the i process.
I move on to investigating elemental abundance ratios that may help us distinguish an s process from an i process by using three-element plots. From this, I came up with four abundance ratios that have the potential to be useful as an i-process signature.
Citation
Womack, K. A. Signatures of i-process nucleosynthesis. (Thesis). University of Hull. https://hull-repository.worktribe.com/output/4224179
Thesis Type | Thesis |
---|---|
Deposit Date | May 24, 2022 |
Publicly Available Date | Feb 24, 2023 |
Keywords | Physics |
Public URL | https://hull-repository.worktribe.com/output/4224179 |
Additional Information | Department of Physics, The University of Hull |
Award Date | Sep 1, 2021 |
Files
Thesis
(14.7 Mb)
PDF
Copyright Statement
© 2021 Womack, Kate Alice. All rights reserved. No part of this publication may be reproduced without the written permission of the copyright holder.
You might also like
Isotopic ratios for C, N, Si, Al, and Ti in C-rich presolar grains from massive stars
(2022)
Journal Article
Progress on nuclear reaction rates affecting the stellar production of <sup>26</sup>Al
(2023)
Journal Article
The chemical evolution of the solar neighbourhood for planet-hosting stars
(2023)
Journal Article
Type Ia Supernova Nucleosynthesis: Metallicity-dependent Yields
(2023)
Journal Article
Downloadable Citations
About Repository@Hull
Administrator e-mail: repository@hull.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search